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Foreword

This document has been produced by the Interdepartmental Group on Health Risks from Chemicals (IGHRC) 
as part of its Phase 3 work programme (October 2007 to May 2013). It is about using knowledge of the chemical
structure and physicochemical properties of a substance to make predictions about its toxicity. Such predictions 
can be used in a variety of ways: to screen for alerts, to supplement other forms of data, to give a basis for decision
making when nothing else is available; and sometimes to obviate the need for experimental testing. 

The document shows what tools and approaches are available and the circumstances in which these predictions 
are currently used in chemicals regulation - the predictions being made or (if made by others) accepted by UK
government departments. There is clearly an appetite and a role for predictive approaches. With this in mind, the
document recommends how the basis for such predictions should be presented to UK government departments to
maximise the chances of acceptance, and suggests initiatives that could further advance the development and
application of predictive techniques. 

Cases are described that exemplify how things stand at present. An important inference is that, currently, predictive
techniques are not being used significantly in ways outside of those described, probably because they are not deemed
to be sufficiently reliable for the purpose in question. If any reader of this document thinks that the current UK
government perspective is too limited, the IGHRC Secretariat will be happy to receive worked examples that aim 
to show how predictivity could be applied more widely and the advantages that could arise from so doing.

Dr Steve Fairhurst
Chairman of IGHRC
Chemicals Regulation Directorate, Health and Safety Executive
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11..11  IInnttrroodduuccttiioonn

There is a growing interest in, and increasing
imperatives for, the development of alternative
methods for toxicological evaluations that reduce,
refine or replace (3Rs) the use of animals. The drive
for designing alternative means to characterise the
toxicological properties of substances, including the
development of different test methods, is being fuelled
by a combination of societal expectations, legislative
pressure, economic costs and scientific opportunity
(Kimber et al., 2011). In addition, in the UK there 
has been a recent pledge (May 2010) by the current
coalition government to reduce animal
experimentation1. 

The vision for the safety assessment of chemicals in
the 21st century seeks to utilise the increasing power
of modern computational chemistry in combination
with advanced systems’ biology, high-throughput 
in vitro screening and ‘omic’ technologies to predict
the toxic potential and to prioritise chemicals with
respect to the need for detailed toxicological
evaluation.

The focus of this document is on the recent advances
in computational chemistry and the increasing
understanding of the relationship between chemical
structure and biological activity as a means to predict
the toxicity of chemicals (human health hazard
assessment). The predictive approaches considered in
this report are those non-testing techniques based on
structure–activity relationships of chemicals. These
can be computer based, such as (quantitative)
structure–activity relationship (Q)SAR models 
(in silico methods) or based on less-formalised
analyses of information, such as read-across and
grouping of chemicals (categories).

There are many promising benefits to these
techniques, including their cost effectiveness, 
speed compared with traditional testing and 
reduction in animal use.

(Q)SAR and other predictive techniques have been
widely used by the pharmaceutical industry for many
years to predict drug activity and identify new
candidate drugs for further development. Generally
these models, which are designed for the prediction 
of the desired pharmacological action rather than the
unwanted toxic activity of a substance, are proprietary
and confidential, and thus tend not to be available to
the wider scientific community. In addition, (Q)SAR
tools developed for the prediction of drug activity
(computational pharmacology) are not generally
suitable for toxicity prediction for several reasons.
Drugs cover a relatively narrow chemical range 
(i.e. a limited number of potential structures), are
developed with discrete biological targets in mind,
have relatively high target molecule affinities,
conform to a limited range of physicochemical
properties, have well-understood metabolic profiles
and also have well-known and quantified patterns 
of use. Many of the tools used in computational
toxicology by the pharmaceutical industry were
developed with these aspects in mind. They have 
had to be adjusted to the broader structural universe
(chemical space) of environmental chemicals to
become of some use for toxicity prediction.
Environmental chemicals may not have discrete
intended biological targets (with the exception 
of pesticides and biocides), usually do not exhibit
high-affinity interactions with molecular targets, 
often have largely unknown metabolic patterns and
can have highly variable patterns of use that may
result in highly variable exposures.

Although progress in the use and further development
of in silico techniques applicable to toxicology has
been more gradual than that of models applicable 
to pharmacology, new European legislation, such as
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1 www.cabinetoffice.gov.uk/sites/default/files/resources/
coalition_programme_for_government.pdf (p. 18; accessed May
2013)
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REACH and the Cosmetics Directive, has led to
increased interest in, and improved dissemination 
of, the principles of these methods, resulting in an
enhancement of specific tools for toxicity prediction.
This is because these pieces of legislation promote 
the use of alternatives to laboratory animals to provide
estimates of toxicity for hazard and risk assessment
purposes.

The use of predictive approaches can be important 
in human health hazard assessment of chemicals.
Predictive approaches are of value when specific
toxicity data are not available on an individual
chemical or a mixture of chemicals.

• The registration requirements of REACH call for
toxicological information for a large number of
chemicals, and the ability to utilise existing data 
on related chemicals in ways that avoid the need
for new vertebrate animal testing could result in
significant savings in resources and animals. 

• Even if the chemical of concern is covered by 
a prior authorisation regulatory scheme (e.g.
pesticides, biocides or food additives) demanding
extensive packages of test data before
authorisation, there might be opportunities 
to reduce animal use as well as cost and time
implications to industry. 

• In some instances, such as the finding of
contamination in food or environmental samples 
at relatively low levels, there can be a need to
quickly make some assessment of the possible
threat before new data can be generated, in order
to provide the basis for decision making aimed at
reducing exposures (e.g. removal of an item from
sale). 

In addition to the use in formal hazard assessment, it
is also possible to use predictive approaches in other
ways.

• To prioritise future testing and/or detailed
assessment, based on the level of concern
identified in the prediction

• To eliminate potentially toxic compounds before
they might be synthesised as commercially useful
substances

• To provide support for, or the basis of a challenge
to, data from a non-standard investigation

• To identify components in a mixture that present
the greatest level of concern

• To form part of a weight-of-evidence (WoE)
approach, alongside test data and exposure
estimation

Predictive approaches can lead to conclusions that are
qualitative/categorical (e.g. chemical X has an alert for
mutagenicity), quantitative/continuous (e.g. chemical X
has a 4h-LC50 value of 25mg m-3), or a combination
of the two (e.g. chemical X is likely to 
be a weak sensitiser). The type of prediction used can
be driven by the required output.

Recent developments in computing power, the ability
to create extensive databases and the use of the
internet to compile, organise and distribute
information have increased the capability to
investigate relationships between chemical structure
and biological activity. A wide range of (Q)SAR
programs that use a range of approaches to predict a
chemical’s toxicity profile are now available. As test
data become available on a wider range of chemicals,
the potential increases to develop the means to
extrapolate or read-across with confidence from the
data to a structurally closely related compound. 

While the increases in knowledge of the relationships
between chemical structure and biological activity
have enhanced the ability to predict the toxicity of
untested chemicals, they have also demonstrated that
subtle changes in chemical structure can have a
significant impact on biological activity, especially 
if the toxicity is mediated by binding to a receptor. 

For this reason, certain minimum criteria need to be
taken into account when performing hazard
assessment with predictive approaches. It is therefore
important to be aware of the limitations of predictive
approaches and the basic requirements associated with
their use in human health hazard assessment.

This document describes some of the predictive
approaches available for human health hazard
assessment of chemicals and how they have been used
by UK government departments and agencies. It does
not aim to be a definitive guide, but is more a
compilation of currently used approaches together
with some case studies.

As part of the development of this document, a
questionnaire was circulated to UK departments and
agencies to determine their current uses of predictive
approaches. The main results of the survey are
outlined below, by department. The tabulated results
of the questionnaire are presented in Appendix 1. 
In addition, a workshop to explore in more depth the
perception and use of predictive approaches across
UK government regulatory bodies was held in January
2012; findings from that workshop have been
incorporated into this document.

Overall, the survey has shown that read-across from
structurally related chemicals and grouping
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approaches are used routinely by UK government for
different types of chemical within various pieces of
legislation, in different contexts and for different
purposes or assessments. (Q)SAR models are used
much less commonly, mainly because of a lack of in-
house expertise; they are usually utilised in specific
situations (e.g. for minor impurities, residues, by-
products or metabolites) requiring only a limited
toxicological assessment. They also tend to be applied
in a weight-of-evidence (WoE) approach together with
other strands of information. If a consensus prediction
is obtained from several different models, then the
prediction is more likely to be accepted. In addition,
a positive (Q)SAR result tends to be accepted, in 
the absence of study results, more readily than a
negative result.

In many instances, there appear to be no formal
guidance documents on the use of such predictive
approaches and no freely available software tools that,
together with appropriate training, can help promote
and harmonise the use of these techniques. Another
obstacle to the use of computational methods is the
need to ensure IT security within government
departments. However, despite all these barriers,
predictive toxicology is widely perceived by UK
government to be a useful tool to support regulatory
assessments and decision making.

The survey has also shown that the reason for
applying these techniques varies, depending on the
context. There are situations where urgency and/or
speed of decision making is the driver because there 
is no time for generating new data (e.g. in chemical
contamination of food incidents). There are also
circumstances where the application of predictive
methods is the only available option because there is
no legislative instrument to request test data (e.g. in 
an environmental contaminant with no data). On some
occasions, the use of predictive tools is deemed to be
acceptable because it is only to assist in prioritising
chemicals for further detailed assessment or because
the decision-making process does not lead to major
regulatory consequences (e.g. in voluntary, industry-
driven evaluation schemes such as the OECD HPV
programme). In many instances, the main factor
driving the implementation and acceptability of these
approaches is the reduction of animal testing, costs
and regulatory burden (e.g. in use of read-across for
some endpoints for pesticides, biocides, food-contact
materials and food additives). 

There are also situations where the legislation is not
prescriptive in requiring animal testing but instead
offers some flexibility in the type of methods that can
be selected to perform the hazard assessment (e.g. for
impurities, residues, metabolites, by-products, co-
formulants). In these instances, the application of

predictive toxicology is considered acceptable either
because, even if the prediction is wrong, it is not as
critical to the overall evaluation (e.g. where an
impurity is present at very low levels); or a pragmatic
approach is adopted because it would be impractical,
unsustainable and unworkable to request full
toxicological packages of test data on a potentially
very high number of different but related chemicals
(e.g. for residues, metabolites and by-products of
pesticides and biocides). 

It should be noted that although these approaches are
applied always with caution and only if it is deemed
that they are adequate and scientifically valid, the
general view remains that they are considered to be
less reliable than animal testing. 

11..22  CCuurrrreenntt  uussee  ooff  pprreeddiiccttiivvee
aapppprrooaacchheess  bbyy  UUKK  ggoovveerrnnmmeenntt
rreegguullaattoorryy  ddeeppaarrttmmeennttss  aanndd
aaggeenncciieess
1.2.1  Health  and  Safety  Executive:  Chemicals’
Regulation  Directorate

The Chemicals’ Regulation Directorate (CRD) in HSE
is responsible for the implementation of several pieces
of EU chemical legislation such as Plant Protection
Products Regulation (PPPR), Biocidal Products
Directive (BPD; to be replaced by the Biocidal
Products Regulation (BPR)), Registration, Evaluation,
Authorisation and Restriction of Chemicals (REACH)
and Classification, Labelling and Packaging
Regulation (CLP).

Plant  protection  products  (pesticides)  and
biocides

For the evaluation of active substances under the
PPPR, predictive approaches are rarely used by the
industry duty holders, as submission of extensive
packages of test data is prescribed by the legislation.
Only very occasionally, read-across arguments from
very closely related analogues have been proposed for
some endpoints by duty holders. The situation with the
evaluation of active substances under the BPD and
BPR is similar. Read-across from structurally related
substances is proposed from time to time by the
industry duty holders in relation to a wide range of
different toxicological endpoints; in these cases, the
use of the read-across approach is proposed by
industry to fill data gaps for chronic toxicity,
carcinogenicity and reprotoxicity (endpoints requiring
the conduct of very expensive studies with high levels
of animal usage). (Q)SAR model predictions (usually
the expert system Derek Nexus) are sometimes
utilised by duty holders to support read-across
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proposals. Under these regulatory schemes, the
validity of such approaches is thoroughly assessed by
HSE to determine whether to accept, reject or modify
them. Subsequently, if accepted, HSE has to defend
them to the other Member State regulatory bodies and
EU institutions involved. On occasion, HSE may also
choose to perform its own computational prediction
(Derek Nexus is used) to expedite the evaluation
process.

(Q)SAR model predictions tend to be used on a more
regular basis for the toxicological evaluation of
impurities in new sources of pesticide active
substances or for the toxicological assessment of
products/residues and groundwater metabolites arising
from metabolism of the pesticides by plants and soil
organisms. In some instances, these in silico
predictions are generated and put forward by industry
(on its own accord or at the request of HSE) and
subsequently assessed and verified by HSE, but on
occasion HSE chooses to perform its own
computational predictions (again, Derek Nexus is
used). These (Q)SAR predictions are never used
completely in isolation in such assessments, but
always in a WoE approach, together with some test
data (in vitro and in vivo) and consideration of other
factors such as potential exposure levels, structural
similarity to the parent chemical or metabolites
produced in experimental rodent studies and expert
predictions of kinetic behaviour.

For the evaluation of products under the PPPR and 
the BPD/BPR, read-across is used on a routine basis
to extrapolate acute toxicity data and dermal
absorption values from one formulation to another
very similar formulation (same active substance and
similar composition of co-formulants). Read-across
arguments are generally developed by the industry
duty holders and subsequently evaluated for their
validity/adequacy by HSE.

REACH  (chemicals  in  general)
For the assembly of information profiles of general
chemicals under REACH, predictive approaches play
a pivotal role; in fact, the legal text states that one of
the purposes of the regulation is ‘the promotion of
alternative methods for assessment of hazards of
substances ...’. Consequently, non-testing methods
should be used ‘whenever possible’ and the use of
vertebrate animal tests to generate new toxicity data is
regarded as a last resort. For registration purposes,
read-across and grouping approaches have been used
extensively by industry to fill data gaps. For some
endpoints, up to approximately 30% of the
registrations submitted to ECHA before the deadline
of December 2010 included a read-across argument. 
A comprehensive picture of the acceptability of these
arguments to the regulatory bodies involved, including

the UK REACH Competent Authority in HSE (CRD),
has not been produced yet, as the compliance check of
selected registration dossiers is still ongoing. So far,
the appraisal of the first batch of dossiers by ECHA
shows that the quality of the proposed read-across
arguments is rather poor: they tend to lack sufficient
and adequate justification.

(Q)SAR model predictions can also be utilised.
However, it appears that only 0.1–0.2% of the
registrations submitted by industry to ECHA before
the deadline of December 2010 included the use of 
in silico techniques as stand-alone methods. From the
available statistics produced by ECHA, it is difficult 
to determine whether (Q)SAR methods have been
used as supporting evidence in conjunction with other
data in a higher number of registrations, since one of
the categories used in the analysis was ‘weight of
evidence approach’. Generally, (Q)SAR does not 
yet have regulatory acceptance as a stand-alone
method. Detailed guidance documents are available 
to support the use of these techniques for the purposes
of REACH.

Classification  and  labelling
For the purposes of harmonised classification and
labelling (C&L) of substances, read-across and
grouping approaches, which are normally put forward
by industry and considered or evaluated for their
validity by the relevant regulatory authorities, have
been used on an ad hoc basis. (Q)SAR model
predictions are rarely used and never as stand-alone
methods. It is also significant that C&L decisions have
generally been based on the data available on a
substance, which has not provided a stimulus to fill
data gaps. However, for some endpoints, the presence
of some substructures (structural alerts) has been
sufficient for a positive classification in the absence 
of in vivo data (e.g. respiratory sensitisation for
isocyanates, skin/eye irritation for organic peroxides). 

OECD  high  production  volume  chemicals’
programme

CRD (together with the Health Protection Agency 
and the Environment Agency) also plays a role in the
OECD-HPV (high production volume) chemicals’
programme, which is a voluntary collaboration
between sponsor countries and industry to establish
agreed hazard profiles on high production volume
substances. Within this programme, industry has made
extensive use of the category approach to minimise
the testing of individual chemicals. Many of the
categories proposed have been accepted by the
regulatory bodies involved. However, it should be
noted that within this programme the conclusions of
the evaluation do not lead to major regulatory
consequences; in general, there is a more relaxed
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approach and an acceptance of less exactitude where
there are no such implications.

1.2.2  Current  use  of  predictive  approaches  by  the
Food  Standards  Agency  (FSA)

In the food area, the basis for the evaluation of
flavouring compounds is grouping approaches and
read-across from data on related substances. This
approach was incorporated into the European
regulatory framework for flavouring compounds 
and was based on an opinion from the Scientific
Committee on Food in 19992. Flavourings impart taste
and/or smell to food. Any particular flavouring is a
complex mixture of a number of individual chemicals
which in combination produce the desired taste or
smell. When combined, structurally closely related
compounds may modify the perceived taste or smell.
As a consequence a large number of compounds may
be used in flavourings often in relatively small
quantities. Test data on every individual chemical are
usually limited. However, because compounds can be
grouped, it is possible to apply a stepwise approach
that integrates information on intake from current
uses, structure–activity relationships, metabolism 
and, when needed, toxicity. The flavourings are first
subdivided into three structural classes (I, II, III). 
Then it is predicted whether they will be metabolised
to innocuous products. If they are, then intakes are
compared to the thresholds specified for the structural
classes below which exposures are not considered to
present a safety concern. If exposures are greater than
the threshold then, unless the compound is
endogenous, under intended-use conditions an
adequate margin of safety must exist from the
NOAEL for the substance or a structurally related
substance (allowing for any perceived difference in
toxicity between the substance and the related
substances). Although a similar system for flavouring
evaluations is used by the Joint FAO/WHO Expert
Committee on Food Additives (JECFA), the European
Food Safety Authority (EFSA) places greater
emphasis on absence of possible genotoxicity and uses
two exposure approaches.

Comparison of the relative bioavailability of many
nutrients from nutrient sources has relied on estimates
comparing the relative dissolution data for each
particular nutrient source with bioavailability
information on a known nutrient source. This
approach was considered proportionate and pragmatic,
since the legislation is based on comparison of
nutrient sources rather than being product specific,
therefore the influence of other formulation
components on the actual bioavailability can 
be ignored.

Read-across from structurally related chemicals is also
used on an ad hoc basis in the evaluation of food
contact materials and food additives. Components 
of food contact materials, such as printing inks and
adhesives, are often compositionally similar to
materials intended for other uses (e.g. in medical
devices) sold under the same trade name. Some of
these other uses may require toxicological data on that
specific material. Where data exist on such a material
and sufficient comparative compositional information
is available, then data would be read-across to the
food contact material. Although in the case of food
additives toxicological studies are required, it has been
recognised that there are some categories, for example
botanical extracts, where testing each individual
product would be neither scientifically nor ethically
justifiable. Although different extraction processes
produce extracts of differing composition, by testing
representative extracts (ideally from both extremes
and the centre of the potential compositions) potential
differences in biological effect should be observed. It
is possible to extrapolate the observed findings to the
untested extracts within the tested domain and
determine whether or not these would be acceptable.
A good example of this approach is in the opinion on
rosemary extracts from the EFSA Panel on Food
Additives, Flavourings, Processing Aids and Materials
in Contact with Food (EFSA, 20083). In this example
toxicological and compositional data were available
for five different extraction methods, provided the
specifications included allowable ranges of some
principal components were defined these data could 
be extrapolated to other rosemary extracts.

Predictive approaches including in silico methods are
applied extensively to the evaluation of food incidents
as there is often a need for an urgent conclusion or
decision to be taken, and no time to wait for new
information to be generated via testing. 

(Q)SAR model predictions (Derek Nexus, Toxtree,
Lazar and Osiris) have only been used occasionally 
in conjunction with genotoxicity test data in the
assessment of impurities present in veterinary
medicinal products and in the toxicological evaluation
of animal feed additives, either of which may lead to
residues in meat and milk. 

In 2012 the EFSA Scientific Committee adopted an
opinion endorsing the use of the threshold of
toxicological concern (TTC) under defined
circumstances. From a scientific perspective the TTC
approach could, in principle, be applied to any
substances for which exposures are low and toxicity
data are sparse. However, in the context of the EU
there is a legislative requirement to submit toxicity
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data in several areas (e.g. the technically active
substances in pesticides, food additives and feed
additives). The TTC approach was recommended as a
useful screening tool either for the setting of priorities
for data needs and for risk management action or for
deciding whether exposure is so low that the
probability of adverse health effects is low and
consequently further data are not needed. In the case
of chemicals subject to legislative requirements the
latter could be applied to unavoidable residuals and
contaminants, degradation products and metabolites4.
A number of chemical groups where the TTC
approach should not be used are high potency
carcinogens (i.e. aflatoxin-like, azoxy- or N-nitroso-
compounds, benzidines, hydrazines), inorganic
substances, metals and organometallics, proteins,
steroids, substances that are known or predicted to
bioaccumulate, nanomaterials, radioactive substances
and mixtures of substances containing unknown
chemical structures.

1.2.3  Health  Protection  Agency

The Health Protection Agency (HPA) is a non-
regulatory body that is responsible for providing
toxicological advice to other government departments
and agencies in relation to environmental
contaminants in drinking water, soil, air and waste
processes. 

Read-across from data on related substances and
grouping approaches are often used for the assessment
of environmental contaminants, as test data can be
limited for the chemicals of interest and there is no
regulatory option available for requiring a specific
duty holder to perform further testing.

In the case of drinking water, the HPA provides
toxicological advice to the Drinking Water
Inspectorate (DWI) regarding its regulatory approval
scheme for products permitted for use in contact with
the public water supply. Migration tests are conducted
on some products. Some chemicals can be detected
leaching into the test water at relatively low levels.
These chemicals are usually not product ingredients,
but degradation products, reaction by-products or
impurities etc. For the majority of these chemicals,
there are no or very limited toxicity data. In such
cases, the HPA may use a read-across approach where
relevant toxicity data are identified for very similar
compounds. When adopting this approach, the
uncertainty is clearly acknowledged. A pragmatic
approach has to be adopted. Structural alerts for
mutagenicity may also be used for chemicals with no
or very limited toxicity data. For example, the HPA

has advised that chemicals such as nitrosamines,
primary aromatic amines and oxiranes should be
regarded as potentially mutagenic and carcinogenic
and thus, exposure should be as low as reasonably
practicable (ALARP). 

The HPA also provides toxicological advice on test
results that have been conducted for public and private
water supplies. These can be carried out in response to
taste and odour problems. Hydrocarbon compounds
originating from a petroleum product source (e.g.
heating oil spill) are often detected at relatively low
levels. Toxicity data are not available for many
individual hydrocarbon chemicals. However, a risk
assessment can be conducted by using oral reference
doses (RfD) for various hydrocarbon fractions
containing very similar compounds. This approach is
recommended by the World Health Organization
(WHO) Guidelines on Drinking Water Quality5 and
based on an approach derived by the Total Petroleum
Hydrocarbon Criteria Group (TPHCWG, 1997). The
RfD are derived from individual chemicals or
hydrocarbon mixtures considered to be sufficiently
representative of the toxicity of certain hydrocarbon
fractions (each fraction contains a large number of
individual chemicals within a specific carbon number
range).

A similar approach has been adopted when the HPA
has been asked to provide toxicological advice on
exposure to vapours from petroleum hydrocarbon
products, such as that arising from an indoor leak or
spill of heating oil (kerosene). In such cases exposure
is likely to occur to a mixture of volatile hydrocarbon
compounds for which there are limited or no
individual inhalation toxicity data. Comparisons can
be made with the various inhalation reference
concentrations (RfC) derived by the TPHCWG
(1997). For example, the concentration of the detected
hydrocarbon fraction in air can be compared with
TPHCWG (1997) chronic (lifetime) RfC of 1mg m-3

for USA JP8 jet fuel (C8–C16), which is considered 
to be sufficiently similar to heating oil vapour.

For dibenzo-p-dioxins and related compounds
produced by combustion processes, that can be present
in soils, internationally agreed toxic equivalent factors
(TEF) are normally used. The application of TEF is
based on extrapolation, or read-across from data
available on some congeners to structurally related
congeners lacking such data.

Where no genotoxicity data are available, (Q)SAR
model predictions can be used on an ad hoc basis for
the assessment of mutagens and genotoxic
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5 www.who.int/water_sanitation_health/publications/2011/
dwq_guidelines/en/index.html [accessed March 2013] 
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carcinogens. The HPA acting as secretariat to the
Committee on Mutagenicity (COM) has undertaken
some initial investigations using a combination of
CAESAR and Toxtree. These two models are freely
available and combine a statistical model (CAESAR)
with a knowledge-based model (Toxtree). This
proposal is currently under review by the COM.

1.2.4  Medicines  and  Healthcare  Products
Regulatory  Agency

The Medicines and Healthcare Products Regulatory
Agency (MHRA) is a government body. Its functions
include the regulation of human medicines and
medical devices and equipment used in healthcare and
the investigation of harmful incidents. The principal
aim of the agency is to safeguard public health.

Generally, for new active substances at the marketing
authorisation stage a read-across or category approach
is not used. Each compound is considered on a case-
by-case basis. The rationale for this approach is that
small changes in the chemical or molecular structure
of the drug substance can have a significant impact on
biological activity. Also, changes in the drug product,
such as changes in the excipients or formulation, may
impact on biological activity. 

In addition, predictive approaches are not generally
used since an extensive package of test data is
required by the legislation. If a non-clinical dataset
(which generally includes data generated in vitro and
in animal studies on the pharmacodynamics, safety
pharmacology, pharmacokinetics and toxicity of the
compound) is not complete or the studies are not of
the required quality, then the relevant data would be
requested from the applicant. This may involve further
experimental studies. It is the responsibility of the
applicant to submit an appropriate non-clinical
package of studies. These data are considered to be
commercial-in-confidence property of the applicant. 

Regarding the potential impact of human medicines 
on the environment, QSAR and read-across from other
structurally related substances may be used to help
interpret the data, but not to replace completely the
need for guideline studies.

Predictive approaches may be used in certain
circumstances and some endpoints. Several examples
are given below.

Concerning the genotoxicity of a compound, if a
chemical is mutagenic in vivo, it is considered to 
be potentially carcinogenic and there is no need for
carcinogenicity studies. If a compound is genotoxic 
to somatic cells, it is considered to be also genotoxic
to germ cells and there is no need for germ cell

mutagenicity assays. If a compound is positive 
in vitro, it is considered to be an in vivo genotoxin 
and in vivo studies are generally not required. These
are examples of activity–activity relationship (AAR)
rather than SAR where certain toxicological properties
are predicted on the basis of the presence of hazards
which share similar mechanisms of action.

If a substance belongs to a specific class or group of
chemicals it is possible to apply QSAR in its simplest
form. For example, certain anti-cancer compounds
such as anthracyclines are considered to be genotoxic,
carcinogenic and toxic to reproduction without the
need for experimental verification. Compounds that
belong to a class that has been well characterised as
causing developmental toxicity do not require
reproductive toxicity studies. If a chemical is
genotoxic and targets rapidly dividing cells,
reproductive toxicity studies are not required.

Another example of the application of predictive
approaches is the use of read-across in the
authorisation process of generic medicines. If a
medicinal product is considered to be essentially
similar to a currently marketed product, additional
non-clinical studies are generally not required. An
overview of the toxicological profile of the product
based on information on existing products (usually
from the published literature) is acceptable. However,
it is important to emphasise that this is not a generic
position which is always applicable. For example, for
drugs comprising a liposomal formulation, specific
data may be required as it has been shown that even
small changes in various components of the
formulation, including liposome morphology, may
affect the biological properties of the product.

Predictive approaches are often used in clinical trials 
in the initial trial dose setting. Computer-aided
prediction of drug toxicity through the application of
several software models (e.g. Derek Nexus, MCASE,
TOPKAT) together with information on target 
receptor occupancy (based on in vitro studies) play 
an important role in the determination of the maximum
recommended starting dose (MRSD) in humans. In
addition, for high risk medicinal products, the human
minimal anticipated biological effect level (MABEL) 
is also established. The MABEL is estimated through
the application of a pharmacodynamic/pharmacokinetic
(PD/PK) modelling approach which integrates
information from (i) QSAR prediction of drug toxicity,
(ii) receptor binding and receptor occupancy studies in
target cells from human and relevant animal species and
in vivo, (iii) concentration–response curves in vitro in
target cells from human and relevant animal species
and in vivo dose responses in relevant animal species,
and (iv) exposure at the pharmacologically active dose
in the relevant species. 
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11..33  EEUU  ssuurrvveeyy  oonn  tthhee  uussee  ooff
((QQ))SSAARR  mmooddeellss  aanndd  iinn  ssiilliiccoo
mmeetthhooddss

An EU-wide survey similar to the one reported here
has been conducted as part of the ORCHESTRA
project; this is a project which is funded by the
European Commission with the intention of
conducting and presenting the findings of research 
in the area of in silico methods for toxicity testing.
The aim of this project is to promote a wider
understanding, awareness and appropriate use of 
in silico methods to regulators, industry users and
academics. 

For the ORCHESTRA project survey, data was
collected between September 2010 and April 2011.
The results are available on the project website6 and
open-access literature (Mays et al., 2012). Thirty-three
stakeholders from within the EU participated in the
survey. Of the respondents, 13 were academics or
consultants (having no direct stake in chemical
manufacturing, nor a mission to protect or regulate
public health), 12 were regulators (having a regulatory
mission) and eight were from industry (chemical
manufacturers or their organisations, having a direct
stake in the outcome of specific REACH dossiers). 

The majority of respondents (20/33) stated that they
had used (Q)SAR or in silico methods and intended 
to continue this use in the future. For those that stated
that they had not previously used in silico techniques,
it was highlighted that these respondents were open 
to their use in the future, if their roles were to allow
them to do so. 

The stakeholder respondents cited a total of 28 in silico
models when asked which in silico models, methods
or software they had previously applied. Of the 28
models cited, the OECD (Q)SAR Toolbox and
EPIsuite were the most frequently utilised across each
stakeholder group, with CAESAR being the only other
tool which was cited by all groups. Additional
methods which were cited in more than one
stakeholder group included ECOSAR, SPARC and
Toxtree. The remainder of the citations indicated a
great disparity in the selection of models used within
and across stakeholder groups (e.g. 11 different
models were cited by a single respondent).

Respondents were also asked which domains
(physicochemical properties, human toxicology,
environmental fate properties or ecotoxicology) they
most commonly used in their in silico assessments.

The academics and consultants stated that they most
frequently applied the physicochemical domain, whilst
industry seemed to use domains for human toxicology
and environmental fate properties. Within the
stakeholder groups it was noted that few of the
regulator and industry organisations had used all
domains when applying in silico methods.

Regarding the functions for which respondents had
applied in silico methods, academics and consultants
adopted in silico methods as a time-saving device and
for research, whereas industry and regulatory agencies
primarily used in silico methods to generate
supporting information to fulfil regulatory
requirements. Several of the regulatory respondents
stated that, although they had previously used (Q)SAR
tools (primarily the OECD (Q)SAR Toolbox), they
were not sure about the pertinent functions, flagging
an unfamiliarity with the available tools as an issue.
There was a consensus across stakeholder groups that
in the future in silico methods will be useful in the
prioritisation of chemicals of concern and for
assessing thousands of chemicals simultaneously. 

In addition to the current uses of in silico methods 
by stakeholder groups, the ORCHESTRA survey also
tried to identify the barriers that prevent the use of in
silico methods and ways in which their use might be
increased. In general, regulatory bodies tended to
highlight problems with the accessibility of these
computational tools, such as cost, required expertise 
to correctly interpret the model outputs, knowledge
and training. Many emphasised the lack of
documentation, clarity, simplicity and transparency 
of these in silico models (see Mays et al., 2012 for
further details).
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2Available Techniques

There are many regulatory programmes to assess the
risks that chemical substances pose to humans or to
the environment. For reasons of animal welfare and
cost, it is necessary to limit the number of tests
conducted where this is scientifically justifiable
(OECD, 2007a).

Non-testing data can be generated by three main
approaches.

• (Quantitative) structure–activity relationships
((Q)SAR) including the use of expert systems

• Read-across

• Chemical category formation

These approaches are based on the theory that similar
chemicals should have similar biological activities
(‘similarity principle’) and will be discussed further 
in this section.

22..11  GGuuiiddaannccee  oonn  ((QQ))SSAARR
2.1.1  Explanation  of  the  (Q)SAR  concept  and
expert  systems

(Q)SAR is the collective term for SAR and QSAR;
these are theoretical models that can be used to predict
the physical, biological or environmental properties of
a chemical (ECHA, 2008). They are defined as
follows.

Structure–activity  relationship
A structure–activity relationship (SAR) is a qualitative
relationship (i.e. an association) between a particular
molecular structure or substructure and the presence 
or absence of a biological activity, or the capacity to
modulate a biological activity imparted by another
substructure. A substructure associated with the
presence of a biological activity may be referred 
to as a structural alert (ECHA, 2008).

A SAR can also be based on the ensemble of steric
and electronic features (biophore or toxicophore)
considered necessary to ensure the intermolecular
interaction with a specific biological target molecule,
which results in the manifestation of a specific
biological effect.

Similarly, a biophobe or toxicophobe refers to the
features that are necessary to ensure the optimal
intermolecular interactions with a specific biological
target molecule that result in the absence of a specific
toxic effect (OECD, 20047).

Quantitative  structure–activity  relationship
A quantitative structure–activity relationship (QSAR)
is a quantitative relationship between a biological
activity (e.g. toxicity) and one or more molecular
descriptors that are used to predict the activity
(OECD, 2004); that is, it is a mathematical or
statistical model that correlates quantitative parameters
from the chemical structure (molecular properties) to a
quantitative measure of a particular activity or
property (ECHA, 2008). That is,

B = f (p1, p2, … pn)

where B is the level of biological activity, and p1 to pn
are molecular properties.

Often, the relationship is linear, so we have

B = K1p1 + K2p2 + … Knpn

where k1 to kn are constants to be determined by
statistical analysis.

The level of biological activity is often a measure of
toxicity, such as a half-maximal effective

7 http://search.oecd.org/officialdocuments/displaydocumentpdf/
?doclanguage=en&cote=env/jm/mono(2004)24 
[accessed March 2013]
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concentration (EC50) or a minimum effective dose.
Molecular properties can either be measured
properties such as molecular weight, boiling point or
ionisation energy; or they can be calculated properties
such as molecular volume, hydration energy or
polarisability. In statistical terminology, the biological
activity is the dependent variable, and the molecular
properties are the independent variables.

Mathematical or statistical QSAR models have often
no mechanistic basis; hence, they tend to perform well
with toxicity endpoints (e.g. irritation) with a single,
well-defined molecular initiating event (MIE), but
usually fail when modelling toxicity endpoints with
multiple, competing MIE (e.g. repeated dose toxicity,
carcinogenicity, reproductive toxicity). A MIE is the
initial chemical-induced perturbation of some
biological system.

Mathematical or statistical QSAR include local and
global models. A QSAR model needs to have a
balance between a wide applicability domain (see
Section 2.1.2) and its predictive accuracy. A global
QSAR model produces its prediction from a large,
diverse dataset, covering a wide range of chemicals.
Although the use of a global model extends the
applicability domain, the predictive accuracy of these
models is often weakened. Local QSAR models are
applicable to fewer chemicals representing a narrower
area of chemical space and produce their predictions
from a narrower chemical subset, usually based on
analogous chemicals. Global QSAR models have the
advantage of being generally applicable (although
detailed information on interactions may be lost),
whereas local QSAR models may provide more
insight into the mechanisms involved in the process
(at the cost of being applicable to fewer chemicals).
Several studies have shown that the use of a smaller
dataset of structurally similar molecules improves
models’ predictive performance. For example,
Bergstrom et al. (2004) divided a global QSAR
database into several subgroups according to
functional groups (e.g. acids, bases and ampholytes) to
assess aqueous solubility and found that the use of two
of the subgroups (bases and ampholytes) improved the
model’s predictive accuracy compared with the use of
the global database.

Expert  systems  
An expert system is any formalised system (not
necessarily computer-based) that enables a user 
to make rational predictions about the properties 
or activities of chemicals. All expert systems for the
prediction of chemical toxicity or activities are built
upon experimental data representing one or more
effects of chemicals in biological systems (the
database) and rules derived from such data (the rule-
base; OECD, 2004). Expert systems are based on

mechanistic descriptors (e.g. functional groups,
structural alerts) or have a more mechanistic base. 
To be developed they require a detailed analysis of the
toxicological endpoint data available in the scientific
literature such that rules that relate structural features
to toxicity can be derived. This is a slow and time-
consuming process. They can be used for more
heterogeneous groups of compounds than can
straightforward SAR and QSAR, and they are suitable
to identify active chemicals for a wide range of
endpoints, including those toxicity endpoints
involving multiple, competing MIE (e.g. repeated dose
toxicity, carcinogenicity, reproductive toxicity).

The rule-base can be of two main types.

1 Rules based on statistics, where the models have
been derived from the statistical analysis of data,
using pattern recognition techniques – these are
typically quantitative in nature.

2 Rules based on existing knowledge and expert
judgement (based on knowledge of reactive
chemistry) – these are typically qualitative 
in nature.

Therefore, expert systems are characterised into 
two main groups according to the rules employed.
Automated rule induction systems primarily use
statistically induced rules; examples include the
commercially available models TOPKAT and
MULTICASE and the freely available software tool
Lazar. Knowledge-based systems primarily use rules
derived from expert opinion (akin to asking a group 
of experts for their opinion). Examples of the latter
include Derek Nexus, based on knowledge of
structure–toxicity relationships and mechanisms of
action, Toxtree, OncoLogic and HazardExpert. A
simple example of such a rule is: ‘A primary aromatic
amine is probably carcinogenic’.

A third type of expert system, employed by some
models, combines both knowledge-based and
statistically based rules in a hybrid system. Hybrid
expert systems use algorithms to fragment chemicals
into potential structural alerts. Statistical methods are
then used to select the structural alerts that can
distinguish active chemicals from inactive chemicals.
An example of this system is TIMES-SS, which is
used to construct (Q)SAR models to estimate skin
sensitisation potency. 

The advantages and disadvantages of the three main
types of expert system are summarised in Table 2.1.

The predictive ability of a knowledge-based expert
system can be assessed in terms of:
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• its sensitivity (the ratio of correctly predicted toxic
chemicals to the total number of toxic chemicals
tested)

• its specificity (the ratio of correctly predicted non-
toxic compounds to the total number of non-toxic
compounds tested)

• its concordance (the ratio of all correctly predicted
compounds to the total number of compounds
tested).

In the regulatory environment, high sensitivity is to 
be preferred in order to reduce the risk of false
negative predictions. However, most knowledge-based
expert systems currently have only moderate
sensitivity. One reason for this is that, because a given
type of toxicity probably covers only a small region of
toxicological space (i.e. non-toxic chemicals usually
occupy a much larger region of chemical space than
do toxic compounds), it is easier to predict correctly
that a chemical will be non-toxic than that it will be
toxic (Cronin & Madden, 2010).

2.1.2  Validity,  applicability  and  acceptance  
of  (Q)SAR

In order for (Q)SAR results to be used in regulatory
assessment as an acceptable alternative to
experimental data the models should be scientifically
valid. The (Q)SAR model should be assessed in terms
of its validity with reference to the internationally
agreed OECD principles for the validation of (Q)SAR.
The OECD member countries and the EU adopted
these principles in 2004 (ECHA, 2008).

Since non-testing data will be used in different ways
depending on the context, fixed validation criteria are
difficult to define. Therefore the validation principles
for (Q)SAR are not criteria for the regulatory
acceptance of (Q)SAR, but they identify useful
information for their assessment (ECHA, 2008). 
The information on each substance should therefore 
be analysed as to whether it is adequate for regulation
on a case-by-case basis (ECHA, 2008). 

Validation  principles
Introduction to validation: Definition of validation for
(Q)SAR, validation process, and application of validation
principles

The OECD member countries and the European
Commission agreed a set of five principles of
validation for (Q)SAR models for regulatory purposes.
This agreement was made at the 37th Joint Meeting 
of the Chemicals’ Committee and the working party 
of chemicals, pesticides and biotechnology in
November 2004 (OECD, 2007a; ECHA, 2008). These
principles should be read in conjunction with the
associated explanatory notes, which were agreed at the
same meeting, and a checklist, which was designed to
provide guidance on the application of these
principles, as shown in pp. 94–98 of the Guidance
Document on the Validation of (Quantitative)
Structure–Activity Relationships [(Q)SAR] Models
(OECD, 2007a). 

The agreed OECD principles of validation are as
follows (OECD, 2007a; ECHA, 2008). A note
identifying those responsible for applying these
principles is given in parentheses.
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Table  2.1  Comparison  of  the  three  main  approaches  in  expert  systems

Approach Advantages Disadvantages

Source: JRC Report, 2011

Knowledge based Mechanistically connected to the predicted
endpoint

Provides reasoning for the predictions

In many cases supports the prediction with
literature references or expert knowledge

No need to invoke statistics to rationalise
prediction

Often restricted and/or ill-defined applicability
domain

Usually cannot explain differences of the activity
within a chemical class (is qualitative in nature)

Usually has lower accuracy of prediction than
statistical models

Negative prediction could mean inactive chemical 
or insufficient knowledge in the expert system

Statistical Usually has high accuracy of prediction

Can be used for preliminary research when
mechanism of action is unknown

Usually difficult to interpret the model predictions

Often does not provide mechanistic reasoning of
predictions

Often non-transparent to the end user

Hybrid Combines advantages of knowledge-based
and statistical approaches, including
mechanistic interpretability and overall
accuracy

Likely to have restricted applicability domain
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To facilitate the consideration of a (Q)SAR model for
regulatory purposes, it should be associated with the
following information

1 A defined endpoint

A (Q)SAR model should be associated with a ‘defined
endpoint’. In this context an endpoint refers to any
physicochemical, biological or environmental effect
that can be measured and therefore modelled. This
principle is intended to ensure transparency in the
endpoint being predicted by the model, as otherwise
different experimental protocols or conditions could
give the same endpoint. (The developer)

2 An unambiguous algorithm

A (Q)SAR model should be expressed in the form 
of an ‘unambiguous algorithm’. This principle is
intended to ensure transparency of the model
algorithm; however, it is recognised that in the case 
of commercial models, this information is not always
publicly available. (The developer)

3 A defined domain of applicability

A (Q)SAR model should be associated with a ‘defined
domain of applicability’. This is because in terms of
chemical structures, properties and mechanisms of
action, a (Q)SAR is greatly simplified and is therefore
subject to limitations. (Established by the developer
but can be modified by the user)

4 Appropriate measures of goodness-of-fit,
robustness and predictivity

A (Q)SAR model should be associated with
‘appropriate measures of goodness-of-fit, robustness
and predictivity’. Two types of information are
therefore needed to fulfil this principle: a) the internal
performance of the model (from the goodness-of-fit
and robustness); and b) the predictivity of the model
(from using an appropriate test set). (Mainly the
developer)

5 A mechanistic interpretation, if possible

A (Q)SAR should be associated with a ‘mechanistic
interpretation’ where this is possible. Providing a
mechanistic interpretation is not always possible, but
this principle is intended to ensure that the
mechanistic associations between the descriptors in
the model and the endpoint are assessed and, where
possible, documented. (Expert systems tend to have 
an inherent mechanistic interpretation. Mathematical
(Q)SAR do not tend to have a mechanistic
interpretation, but if the developer tries to explain a
mechanistic basis, the prediction is more robust. If
there is no mechanistic basis, the user should check
whether the prediction is linked to a mechanistic
interpretation.)

The OECD Guidance Document on the Validation 
and International Acceptance of New or Updated 
Test Methods for Hazard Assessment (OECD, 2005)
defines the term ‘validation’ as follows.

“…the process by which the reliability and
relevance of a particular approach, method,
process or assessment is established for a
defined purpose” (OECD, 2005; ECHA, 2008)

This definition is difficult to interpret in the context 
of (Q)SAR and the validation principles, so an
alternative definition has been proposed for the
practical validation of (Q)SAR models intended for
use in regulatory assessment.

“The validation of a (Q)SAR is the process by
which the performance and mechanistic
interpretation of the model are assessed for a
particular purpose” (ECHA, 2008)

In this context ‘performance’ of the model refers 
to goodness-of-fit, robustness and predictive ability.
‘Purpose’ of the (Q)SAR is expressed by the defined
endpoint and applicability domain. ‘Mechanistic
interpretation’ could be regarded as the scientific
relevance of the model (ECHA, 2008). This definition
therefore captures the principles of validation and these
collectively would determine the validity (reliability
and relevance) of the model (ECHA, 2008).

The term ‘validation process’ refers to any procedure
during which the principles of validation are applied
to a model or set of models (OECD, 2007a). This
should include a judgement of the validity of the
model (based on model performance, the endpoint and
the chemical domain) and the relevance of the model
for the particular regulatory purpose for which it is
intended (OECD, 2007a). A dossier should be
produced from the validation process and this should
be structured according to the (Q)SAR validation
principles. It may not be possible to fulfil all the
principles of validation because (Q)SAR models may
not have been designed with these in mind, or they
may not have been reported with the details needed 
to fulfil them. Therefore the dossier should be as
complete as possible and regulators will need to be
flexible when considering the acceptability of the
(Q)SAR, taking into consideration its constraints
(OECD, 2007a).

These principles of validation are intended for use
with a diverse range of model types, including SAR,
(Q)SAR, decision trees, neural network models and
expert systems. For systems that are based on multiple
models, the principles of validation should be applied
to the smallest component that functions
independently (OECD, 2007a). 
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The use of (Q)SAR for regulatory assessment is
highly dependent on the context. Users should be
aware of features of the model that could contribute 
to a high or low performance for a particular situation
(OECD, 2007a). Information on the model should be
provided to the assessor of the prediction (e.g. the
regulator) in the form of a reporting format (see
Section 2.1.4). Examples of the sort of information
that can be expected in one of these reports are given
in the OECD’s guidance on the validation of (Q)SAR
models (OECD, 2007b) and includes the type of
model, the definition of the model (including
algorithms and applicability domains), the
development of the model (including the availability
of the training set), the validation and the applications
of the model (OECD, 2007a).

Principle of defined endpoints

In this principle, the term ‘endpoint’ is wide ranging
and could mean any of the following.

• A specific biological effect, for example increased
serum levels of aminotransferases

• A variety of toxicological effects that could range
from observations (clinical signs, e.g. change in
body weight) to haematology, urinalysis or
pathology findings (also called ‘test protocol
endpoints’; OECD, 2007a)

• Results of several tests conducted with different
protocols, or the same protocol in different
organisms (also called ‘regulatory endpoints’;
OECD, 2007a)

As a general rule, the closer the match between the
endpoint predicted by the (Q)SAR and the endpoint
required for the regulatory assessment, the more
reliable the prediction made (OECD, 2007a). How
reliable a particular (Q)SAR will be in a particular
context should be assessed on a case-by-case basis. 
In any case, this principle is designed to ensure that
detailed information is used as a basis for this decision
(OECD, 2007a).

Defining the endpoint for which a model has been
built determines the nature of the prediction that can
be made. In some cases, the endpoint may be obvious,
for example, a mouse oral LD50 measured at a specific
time point. However, consider the case where the
endpoint to be modelled is mutagenicity. Within this
regulatory endpoint it is important to define what
exactly has been modelled. Is it bacterial mutagenicity
(Ames test), or chromosomal damage in mammalian
cells, or point mutation in mammalian cells, or
micronuclei in mice, or something else?

When considering the use of a (Q)SAR, the
experimental protocol and data that were used to
develop it should be assessed. This includes whether

the data used were from a single experimental
protocol or if data from several protocols have been
combined. The design of the assay, the methods used
and how the assay was evaluated should also be
examined. The experimental protocol used will affect
the variability of the dataset and therefore the quality
of the model. In the ideal world (Q)SAR should be
developed using a single protocol, but this is not
always possible. Another issue facing regulators and
companies using (Q)SAR is that this information is
not always publicly available (OECD, 2007a). Some
endpoints are extremely complex and cannot be
accommodated by a single model. In these instances,
different datasets may be used to evaluate the
substance effectively (OECD, 2007a).

(Q)SAR are often grouped according to the defined
endpoints that are associated with the OECD test
guidelines. Table 2.2 shows the common regulatory
endpoints associated with the OECD (2007a)
guidelines.

If the same endpoint can result from several different
mechanisms, the (Q)SAR must be:

• either developed for each specific mechanism and
then applied to a specific class of chemicals; 
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Table  2.2  Common  regulatory  endpoints
associated  with  OECD  test  guidelines

Type of endpoint Common regulatory
or effect endpoints
Physicochemical properties Melting point

Boiling point

Vapour pressure

K octanol/water

K organic C/water

Water solubility

Human health effects Acute oral toxicity

Acute inhalation toxicity

Acute dermal toxicity

Skin irritation/corrosion

Eye irritation/corrosion

Skin sensitisation

Repeated dose toxicity

Genotoxicity (in vitro)

Genotoxicity 
(in vitro, non-bacterial)

Genotoxicity (in vivo)

Developmental toxicity

Carcinogenicity

Organ toxicity 
(e.g. hepatotoxicity, 
cardiotoxicity, nephrotoxicity)
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• or a general (Q)SAR which models the same
observed toxic effect for several classes of
chemicals and toxicity mechanisms (OECD,
2007a). This relationship does not give an
explanation to why a particular substance produces
that particular endpoint, and in order to gain a
better understanding of the mechanisms involved
either multiple (Q)SAR models with different
domains of applicability should be used for the
same endpoint, or instead a statistical method
capable of modelling across multiple mechanisms
(OECD, 2007a).

A defined endpoint should therefore have the
following features (OECD, 2007a).

1 Detailed information should be provided about the
test protocols used to generate the test data, with
special reference to factors that impact variability,
uncertainties and deviations from the standard test
guidelines.

2 Experimental protocols that have differences from
the test protocol should not lead to an endpoint
value that is markedly different.

3 Differences within the protocol should not lead 
to differences in the endpoint that cannot be
rationalised.

4 The (Q)SAR should not be used for substances
outside the chemical domain of the test protocol.

5 The endpoint predicted by the (Q)SAR and the
endpoint measured by the test protocol should be
the same.

6 A well-defined endpoint should reflect differences
between chemical structures.

Principle of unambiguous algorithms

An important factor in the transparency of a model 
is a description of how the (Q)SAR estimates were
produced. This allows others to reproduce the model
in the future (OECD, 2007a).

The ‘algorithm’ of a model could be a mathematical
equation between descriptor variables and response
(endpoint) variables (in case of QSAR) or a
knowledge-based rule (in case of SAR) that forms 
the relationship between the chemical
structure/substructure or other molecular descriptors 
of the substance and the predicted endpoint 
(OECD, 2007a).

Molecular descriptors are used to describe different
features of a chemical. They provide a means of
representing molecular structures in a numerical form.
The number may be a theoretical attribute (e.g.
relating to size or shape) or measurable property 
(e.g. log Pow or aqueous solubility). The most simple

and commonly used molecular descriptors are
molecular weight, atomic composition indices and
atomic count descriptors. Other commonly used
descriptors are those representing structural fragments
(2-D descriptors). More complex descriptors are the
topological descriptors which tend to represent
structural features of the molecule such as size, shape,
symmetry, branching, cyclicity and bond multiplicity.
Equally complex are the electronic descriptors, which
include the ability to cross biological membranes or
bind to macromolecules (correlated with hydrogen
bond donating/accepting ability or dipole interactions)
and chemical reactivity associated with covalent
binding (usually estimated from frontier molecular
orbital information). Even more complex descriptors
are the geometrical 3-D descriptors. These require
knowledge of the relative positions of the atoms in 
3-D space and tend to be applicable to mechanisms 
of action where toxicity is induced by a complex
interaction between the chemical and the biological
molecule (e.g. an enzyme or a receptor). 

The majority of models contain algorithms that are
from an unambiguous source and have been evaluated
by peer review (Table 2.3). However, some algorithms
do not describe how the estimate is produced, and for
many commercial models the algorithm is not always
publicly available (OECD, 2007a). For endpoints that
are binary in nature, the (Q)SAR is primarily a
classification model and the algorithm describes the
presence or absence of a chemical substructure
(OECD, 2007a). Some of the more exploratory
algorithms are inherently ambiguous and these are 
not recommended for use in regulatory applications. 

It is vital that (Q)SAR results are explained in such a
way that they can be reproduced by other members of
the scientific community. The algorithm used to relate
the descriptors of the chemical structure to an
endpoint is an extremely important part of this
explanation, and (Q)SAR models which do not have
this explanation would be less acceptable for
regulatory use. An unambiguous algorithm enables 
the model to be tested and the user to explain how 
the (Q)SAR estimate was made (OECD, 2007a).

Any conclusions drawn from the model are related to
and defined by the dataset used to develop the model.
This is especially relevant for small datasets that used
only a limited number of chemicals, or where the
variability is large (OECD, 2007a).

When assessing the algorithm the following elements
should be considered.

• The dataset of chemicals, endpoint values and
molecular descriptor values
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• How the descriptors were derived and measured

• The test dataset and training dataset, and any
reasoning for the removal of outliers

• The mathematical model used

• Statistical parameters showing how the model
performs

• The parameters and their values in the (Q)SAR
(OECD, 2007a)

The training dataset includes a set of chemical
substances with their molecular descriptors and
measured endpoint values used to develop a 
(Q)SAR model.

Linear regression - Linear regression fits a straight
line through the scatterplot of the molecular properties
(or other explanatory variables) such that the distance
from this line to the points is minimised (it is a ‘line
of best fit’). The distance is usually calculated as the
sum of the squares of the distance from the points to
the line, in which case it is sometimes called an 

ordinary least squares regression. Where there is more
than one explanatory variable it is sometimes called
multiple regression. It is possible to perform linear
regression on transformed (e.g. log based) molecular
properties.

Linear regression is well understood, computationally
cheap and relatively easy to interpret. If there is
reason to suspect that the biological behaviour can be
explained by a small number of known molecular
properties then this is the best option. Unfortunately,
the analytical workflow becomes cumbersome where
there are more than a few tens of descriptor variables,
or if their effects may be non-linear.

Linear regression and genetic algorithms - In the
case of many independent variables (molecular
properties), rather than manually inspecting the results
of a linear regression model, updating it and repeating
it, genetic algorithms can be used to evolve
automatically the ‘best’ model. This involves running
a population of different models and calculating which
ones best fit the data. Poorly fitting models are
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Table  2.3  Some  common  algorithms  used  in  (Q)SAR

Algorithm Advantages Disadvantages Notes Suitability 
Univariate regression
(linear and non-linear)

Describes a simple
relationship between the
descriptor and the
endpoint

Non-linear models can
be over fitted

Can be linear or non-
linear

Univariate linear
regression (ULR) is
generally unambiguous

Multiple linear
regression (MLR)

Applied when the
endpoint needs more
than one descriptor to be
modelled

Possible over fitting

Correlated variables can
be an issue

Example of MLR:
ordinary least squares

Produces a transparent
and reproducible
algorithm

Principal component
analysis (PCA) &
principal component
regression (PCR)

Compresses data

Enables users to identify
patterns in data of high
dimension

Some components are
neglected, these may or
may not be relevant

Noise can remain in the
model 

Can give too much
weight to outliers

Has poor predictive
ability

Suitable for dimension
reduction by neglecting
some components

Partial least squares Useful when have
colinearity in the
descriptors

Outliers are difficult to
identify

Introduction of outliers
afterwards also affects
the model

Is a combination of
MLR and PCR

Suitable to explain the
variance in the
independent variable

Artificial neural nets These models are very
flexible

Useful in pattern
recognition, process
analysis and non-linear
modelling

Demand a large amount
of data

Learns from examples in
the data

Ambiguous

Genetic algorithms Not limited by statistical
functions

Very flexible

Strongly influenced by
decisions of programmer   

Best suited to
development of (Q)SAR
(rather than use)

Contains a learning
process

Ambiguous?
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discontinued, while the better fitting ones spawn a set
of offspring that have been randomly altered (mutated)
from the parent model by adding or removing
independent variables. After several generations the fit
will be improved to some optimal value. 

Genetic algorithms solve the limitations of linear
regressions, allowing the developer to consider
hundreds of molecular properties, and not needing to
specify their effect beforehand. Running many models
for many generations is more computationally
expensive, though not prohibitively so. A larger
problem is that the algorithms are not guaranteed to
converge on a global optimum.

Principal component analysis - Principal component
analysis (PCA) creates a new set of independent
variables (‘predictor variables’) from the existing ones
by using an orthogonal transformation. These
predictor variables have the property of not being
correlated with each other. As a bonus, the new
variables can be scored by their contribution to the
variance of the data. This allows the developer to
reduce the number of variables in the model by
discarding those with a score below some cut-off
threshold. Principal component regression (PCR) takes
the new set of independent variables and uses them in
a linear regression. PCR is computationally cheap and
allows the developer to simplify models from many
descriptors down to a small number. However, the
new variables (which are combinations of some of the
original variables) may be hard to interpret, and partial
least squares regression (see below) is widely
considered to be superior in most cases.

Partial least squares - Partial least squares (PLSR) 
is a modern variation of PCR. Rather than choosing
predictor variables that maximise the contribution to
the variance of the dependent variable, the
independent variables are chosen to maximise the
covariance between each other. This reduces the
impact of large but irrelevant predictor variables.
PLSR shares many advantages and disadvantages 
with PCR, but should be preferred to PCR.

Principle of a defined domain of applicability

All (Q)SAR models have limitations based on the
structure, physicochemical characteristics and activity
of the chemicals used in the model training dataset,
and this principle therefore establishes the scope of the
model. A (Q)SAR can only be expected to be reliable
for chemicals that are similar to those used to develop
the model. Any predictions outside of this scope are
less likely to be reliable (OECD, 2007a).

The scope of the (Q)SAR together with its limitations
is referred to as the ‘applicability domain’ and when
using a (Q)SAR it should be stated whether or not it is

being used within its applicability domain. For some
(Q)SAR models this may be a simple statement that
the chemical is in or out of the domain. For other
more quantitative assessments this may include a
confidence interval that expresses the degree of
similarity between the chemical of interest and the
model training dataset (OECD, 2007a).

It is important to stress that the applicability domain 
is not a measure of performance. Making a prediction
outside a model’s applicability domain does not
automatically mean that prediction is not accurate. 
It simply indicates that the model used to make that
prediction is not designed to do so, and is being
operated outside its intended area of relevance (i.e.
prediction via extrapolation). However, in many cases,
predicting outside a model’s applicability domain does
result in increased prediction error.

The applicability domain of a (Q)SAR model is
defined as “the response and chemical structure space
in which the model makes predictions with a given
reliability” (OECD, 2007a).

In the case of a SAR, the applicability domain is 
a description of any limits on its applicability (e.g.
inclusion and/or exclusion rules regarding the
chemical classes to which the substructure is
applicable). In the case of a QSAR, the applicability
domain is a description of the ranges of the descriptor
and response variables for which the QSAR makes
reliable estimates.

‘Chemical structure’ could be information on
physicochemical properties and/or structural
fragments. ‘Response’ refers to any physicochemical,
biological or environmental effect that is being
predicted (i.e. the defined endpoint; OECD, 2007a).
Information about the applicability domain helps 
the user of the model to judge whether the prediction
will be appropriate for the chemical in question. 
The chemical would be assessed in terms of its
similarity to the dataset used to develop the model
(OECD, 2007a).

An applicability domain should be specific to that
particular model and should be derived from the
chemicals in the dataset, their molecular descriptors
and the statistical approach used to develop the model.
The applicability domain should be defined and
documented by the developer of the model and
include the following information (OECD, 2007a).

• A statement of the unambiguous algorithm

• Details of the dataset (chemical used, descriptors
and endpoint values)
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• Details of the statistical method to develop 
the model

• Structural requirements of chemicals to which 
the model applies 

Validation of the applicability domain is not an
absolute boundary for a given model. If the domain 
is very constrained the model will not be able to
predict the endpoint for a larger number of chemicals;
conversely if it is less constrained the (Q)SAR will 
be able to make predictions for more chemicals but
the predictions may be less reliable (OECD, 2007a).

It should be borne in mind that using the (Q)SAR
within its applicability domain does not guarantee 
that it will be reliable. Even if a chemical lies within
the established scope of the applicability domain, it
could act by a different mechanism of action that is
not captured within the model. Conversely, if the
applicability domain is defined in mechanistic terms,
the (Q)SAR may be able reliably to predict beyond 
the defined dataset or applicability domain. Therefore,
in addition to the physicochemical and structural
domains, the mechanism of action of the chemicals
used to develop the model is a useful addition to the
applicability domain (OECD, 2007a).

The identification of mechanistic domains relies
heavily on expert judgement at present; however some
software tools are available which can assist, as in
these examples (OECD, 2007a).

• Derek Nexus applies knowledge-based rules for
toxicity prediction.

• HazardExpert issues an alert if a toxic fragment 
is found in the query molecule.

• Multicase identifies substructural molecular
fragments and molecular descriptors that are
correlated with specific toxicological activities.

• MDL–(Q)SAR identifies molecular descriptors
that are correlated with specific types of
toxicological activity.

• TOPKAT classifies substances into chemical
classes and applies quantitative models for toxicity
prediction.

• CATABOL, META, MetabolExpert and METEOR
are tools for metabolism prediction and can be
used to predict the metabolites of the substance.

Ideally when assessing the applicability domain,
information on the query molecule and the (Q)SAR
dataset should be provided in terms of structural and
physicochemical similarity. This can be expressed
either qualitatively or quantitatively. In addition, the
mechanism by which the query chemical acts should
also be compared with the mechanism of the 

chemicals in the (Q)SAR dataset. If this assessment 
is not possible, the similarity may also be expressed
statistically (OECD, 2007a).

Some software tools, such as MultiCASE, Leadscope
and Prediction Model Builder, analyse the query
molecule by looking at the molecular fragments. They
check whether these fragments are represented within
the dataset of the (Q)SAR. The higher the incidence 
of the fragments occurring in the dataset, the more
confidence exists that the query chemical will be
predicted reliably (OECD, 2007a).

Other software tools, such as Ambit Disclosure
software, Leadscope and MDL–(Q)SAR, use
algorithms to measure similarity (OECD, 2007a).

The applicability domain should also be endpoint-
specific because different classes of chemicals may
still behave in the same way for a different endpoint.

Commercial (Q)SAR tools vary in extent of available
information concerning the applicability domain. For
example, Derek Nexus will fire an alert if a substance
has a particular structural feature, but expert
judgement is needed to decide if this is relevant in the
required context. TOPKAT enables the user to assess
whether the substance falls within the applicability
domain in terms of the fragment and descriptors. It
also tells the user if the substance is within its own
database and retrieves similar chemicals and their data
(ECHA, 2008).

If multiple (Q)SAR are being used to predict the same
endpoint there are two approaches to validating the
applicability domain.

1 When the query chemical falls within both (or
several) applicability domains, the confidence can
be found by averaging the individual predictions.
If the prediction is the same for two or more
models, confidence should be higher than for a
single model. The common applicability domain 
is narrow for multiple models, so this restricts 
the number of chemicals that can be predicted
(OECD, 2007a).

2 Multiple (Q)SAR are chosen that use different
algorithms, but have high specificity for the
endpoint. The collective applicability domain 
is wider because the (Q)SAR do not necessarily
overlap. This approach is used to gain insight 
into certain molecular properties that are 
correlated with the same endpoint or toxic 
effect (OECD, 2007a).

A stepwise approach has been proposed to determine
the applicability domain of a model, as follows.

— 19 —

— Available Techniques —

CR16 DTP PRINT 160713.qxp  17/07/2013  14:16  Page 19



1 Identify whether the query chemical falls within
the range of the physicochemical properties for the
model

2 Define the structural similarity between the query
chemical and those within the dataset of the model

3 Check that the query chemical contains the
reactive groups that are thought to cause the
desired effect (mechanistic check)

4 Check that the query chemical will be
metabolically active, as chemicals that undergo
metabolic transformation may provide an
inaccurate prediction

These four stages should be applied in a sequential
manner and those that satisfy all four conditions have
an increased reliability in their prediction. However,
this rigorous approach also reduces the number of
chemicals that can be predicted (OECD, 2007a).

Although an understanding of the applicability domain
of the model can either increase or decrease
confidence in a (Q)SAR estimate, it should be noted
that the applicability domain can never provide
absolute certainty about the estimate. Even if the
query chemical is well within the defined applicability
domain, the prediction may still be unreliable. The
reverse can also be true where the query chemical is
outside the applicability domain and yet the prediction
is reliable. Applicability domains should therefore be
used to support the decision made by expert
judgement (OECD, 2007a).

The identification of special atom arrangements that
cause certain types of toxicity (toxicophores) provides
a way of defining mechanistic domains. Within these
mechanistic-based domains, chemicals that contain
multiple functional groups deserve special attention 
as their toxicological activity can be modulated by 
the presence of additional functional groups. 

Principle of measures of goodness-of-fit, robustness
and predictivity

This principle is required in order to establish the
performance of the model, including both internal
model performance (goodness-of-fit and robustness)
and external model performance (predictivity).
Assessment of the performance of the model is 
also called ‘statistical validation’. This statistical
validation should be considered in combination with
knowledge of the applicability domain of the model
(OECD, 2007a).

‘Goodness-of-fit’ is a measure of how well the model
accounts for the variance of the data it is based on
(OECD, 2007a). The goodness-of-fit of a model to its
original training dataset is the absolute minimum of
information needed to assess the performance of the

model. It shows whether a model is statistically
significant and how much the molecular descriptors
account for the variation in the training dataset
(OECD, 2007a).

The ‘robustness’ of a model refers to the stability of
the prediction when one or more data points change
(OECD, 2007a). It demonstrates how sensitive the
parameters and predictions are to changes in the
training dataset. If a model is not robust then it is
unlikely to be useful for predictive purposes 
(OECD, 2007a).

The ‘predictive ability’ of the model is a measure 
of how well the model can predict new data (OECD,
2007a). Models that are too complex (over fitted) will
not predict data as reliably as the internal validation
may indicate; therefore it is important to evaluate the
predictivity of the model as well. External validation
is generally regarded as the most rigorous assessment
of predictivity, since predictions are made for
chemicals not used in model development.

Models with high statistical performance are likely 
to have the following features (OECD, 2007a).

• A high power of prediction with a minimum
number of variables

• Low correlation between the predictor variables 

Models with low statistical performance are likely 
to have the following features (OECD, 2007a).

• A lack of one or more relevant variables 
(i.e. insufficient fitting capability)

• A marked difference between goodness-of-fit 
and predictivity

• One or more irrelevant variables correlated with
the endpoint by chance alone

• A high correlation between the predictor variables

The goodness-of-fit and robustness of (Q)SAR models
have been evaluated for a variety of common
algorithms, as shown in Appendix 2.

One of the most important factors when choosing a
(Q)SAR model is its ability to accurately predict the
desired endpoint with a substance that was not used 
in its development. In order to assess this predictive
power, the (Q)SAR should be validated with
chemicals that were outside the original dataset and
thus were not used to develop it. External validation
should be used to supplement the internal validation
procedures, so that a model is shown to be both robust
and predictive (OECD, 2007a).
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Owing to the practical difficulties in obtaining new,
experimentally tested chemicals, in terms of cost, time
and animal welfare, the dataset available to develop a
model is usually split into two; one is used to develop
the (Q)SAR model whilst the other is used to validate
it. When dividing the dataset in this way the chemicals
should be split into groups according to pre-defined
and suitable criteria, such as the experimental design
used to generate the data. 

In assessing the relevance of a negative prediction 
one needs to be clear about what a ‘negative’ actually
means in terms of the particular model used. For
example, a result of ‘nothing to report’ given by 
Derek Nexus has two possible explanations: either 
the substance class has not been studied for inclusion,
or the substance class has been studied but there is no
evidence of toxicity. The user has to determine the
correct interpretation.

In addition to the data-driven (Q)SAR models
described above that are based on mathematical
algorithms, there are knowledge-driven (Q)SAR.
Knowledge-driven, mechanistic-based or rule-based
(Q)SAR assign chemicals to classes or groups before
attempting to predict the endpoint. 

One of the challenges in using knowledge-based
systems is how to assess the predictive ability of 
the model and the significance of a certain chemical
property or mechanism assigned to the target
chemical, compared with the conventional statistical
methods outlined previously (OECD, 2007a). Derek
Nexus provides the following likelihood levels (i.e. an
indication of probability) for its predictions, which are
based on reasoning.

• Certain: there is proof that the proposition is true.

• Probable: there is at least one strong argument that
the proposition is true and there are no arguments
against it.

• Plausible: the WoE supports the proposition.

• Equivocal: there is an equal WoE.

• Doubted: the WoE opposes the proposition.

• Improbable: there is at least one strong argument
that the proposition is false and there are no
arguments that it is true.

• Impossible: there is proof that the proposition 
is false.

Principle of mechanistic interpretation

The credibility and acceptance of a model is increased
when the validation process is consistent with existing
theories and knowledge from chemistry or toxicology.
This is because it enables the user to explain how and

why an estimated value was produced. A mechanistic
interpretation of a (Q)SAR model can add to the
understanding of the statistical validity and
applicability domain (OECD, 2007a).

The principle includes the wording “if possible”
because the evolution of a (Q)SAR model is an
iterative process that involves the statistical
explanation of data, hypothesis generation and
hypothesis testing. The iterative process generally
leads to a series of refinements to the training set, 
both in terms of chemicals included and their
molecular descriptors.

The basis of a mechanistic interpretation is that the
biological properties of a chemical are inherently
linked to the molecular structure and its attributes. In
(Q)SAR models, the structural attributes of a chemical
are represented in a mathematical form by the so-
called molecular descriptors. If the molecular
descriptors cannot be associated with changes in the
hydrophobic, electronic and steric attributes of the
chemical, then it would be very unlikely that there 
is a mechanistic basis for the model (OECD, 2007a).

There is a general drive to extend the domain of
applicability of (Q)SAR, but this will generally reduce
the mechanistic relevance of the model. Combining
(Q)SAR into an expert system is a long-term solution
to this problem as it improves the overall performance
of (Q)SAR predictions (OECD, 2007a).

There are two types of parameter or descriptor used 
in (Q)SAR models.

1 Those derived from a measurable property of the
molecule, for example vapour pressure, partition
coefficient, dissociation constant

2 Those used to quantify important attributes of 
the chemical structure, also called molecular
descriptors

Molecular descriptors are usually derived using a
computational method. They are a very important
starting point in the development of (Q)SAR, so it is
essential that the method of calculating the molecular
descriptors is also available to the user. It is also
important that, when selecting descriptors, the role
that these descriptors play either in the way the
chemical behaves or in the way the endpoint is
expressed should be known. 

An example of a mechanistic-based molecular
descriptor is a substructure within the whole 
molecule that indicates a potential for biological
activity (e.g. a functional unit). (Q)SAR models based
on substructures have the advantage that the query
chemical can be assessed against an extensive number
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of substructures. However, if the query chemical does
not possess any substructure present in the original
dataset, no prediction can be made. Also, some
interactions between substructures may be difficult 
to anticipate (OECD, 2007a).

Other examples of mechanistic-based descriptors 
are the molecular connectivity indices (MCI). These
descriptors are based on topological information 
and are related to molecular volume, surface area,
presence of branching and potential steric hindrance,
presence of rings and their substituents.

More recently, another type of mechanistic-based
descriptor has been developed, called electronic
descriptors. Examples of electronic descriptors are 
the dipole moment, molecular polarisability, solvent
accessible surface area, atomic charge on an atom, 
and nucleophilic and electrophilic bonds.

Expert systems are based on mechanistic descriptors
or have a mechanistic base. The expert knowledge
incorporated into Derek Nexus is based on a series 
of structural alerts or toxicophores associated with
certain types of toxic activity. When a query structure
is processed the alerts that match are displayed and 
the endpoints that are triggered by these alerts are
indicated. In addition, the bibliographic references
associated with the matched alerts and the triggered
endpoints are shown (OECD, 2007a).

The mechanistic interpretation of a (Q)SAR can 
be established in two ways.

• The descriptors are selected before modelling 
on the basis of their known or anticipated role 
in driving the response (called a priori). 

• The descriptors are selected on the basis of
statistical fit alone (called a posteriori) with 
their mechanistic rationale being formalised 
after modelling.

For (Q)SAR with continuous descriptors, the
mechanistic interpretation can be based on the
physicochemical interpretation of each descriptor 
and its association with a mechanism of action
(OECD, 2007a).

For SAR, the mechanistic interpretation can be 
based on the chemical reactivity or interaction 
of the substructure of interest (OECD, 2007a).

For expert systems, the mechanistic interpretation 
is based on expert knowledge and learned rules.

Reliability of (Q)SAR prediction

Once a model has been assessed as valid it is then
necessary to check that the (Q)SAR is appropriate for

the query chemical and to evaluate whether the
prediction is reliable. This assessment can be divided
into the following stages.

1 Check that the query chemical is within the
applicability domain of the model.

2 Check that the applicability domain is suitable for
the required regulatory purpose. The reliability of
(Q)SAR predictions is a relative concept and
depends upon the context of application; a greater
or lesser degree of reliability would be acceptable
for different applications. The applicability domain
can therefore be defined to suit the particular
regulatory context (ECHA, 2008). Most of the
currently available models were not developed
with regulatory assessment in mind. They also
contain biases within the model, which may or
may not be useful, depending on the use required.
For example, some models are biased towards
certain types of chemical for which there is no
regulatory requirement, and others are biased
towards a certain type of prediction, for example
optimised to correctly identify positives at the
expenses of correctly identifying negatives. Such
biases within the model do not necessarily affect
its validity, but they may affect its applicability. 
So it is necessary to check that there is a good
match between the applicability of the (Q)SAR
and the regulatory purpose (ECHA, 2008). 

3 Check how well the model predicts chemicals
similar to the query chemical. This is performed 
to ensure a model is appropriate and should be
done with a chemical analogous to the substance
of interest and for which measured values exist.
This is effectively performing read-across to
support the use of the model (read-across is
described in more detail in Section 2.2; 
ECHA, 2008).

4 Check that the model estimate is reasonable
according to other information on the query
chemical. This stage of the process requires 
expert judgement. One approach is to compare 
the calculated values for the query chemical 
and its analogues to measured data.

Adequacy  of  (Q)SAR  prediction
If a model is valid and considered reliable it should
lastly be evaluated in terms of the extent that it fulfils
the necessary regulatory requirements. Computer-
based tools are available for this process, but expert
judgement is also important (ECHA, 2008).

In order for a (Q)SAR to be adequate for a regulatory
purpose it must fulfil the following four conditions
(ECHA, 2008).
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1 The model used is shown to be scientifically valid.

2 The model used is applicable to the query
chemical with the necessary level of reliability 
(i.e. the compound of interest falls within the
applicability domain in terms of structure,
physicochemical properties, metabolism and
mechanism of action).

3 The prediction is relevant for the regulatory
purpose.

4 Appropriate documentation on the model and
prediction is given.

During assessment of a chemical it is also necessary
both to consider the completeness of the overall
information on the chemical and document the
adequacy of the (Q)SAR results using the appropriate
reporting format.

Only limited guidance is available on the regulatory
acceptance of (Q)SAR predictions. However, in
general, the following principles should be taken into
account in decision making for regulatory purposes. 

• The principle of proportionality: the amount of
information needed is dependent on the importance
of the decision that will result from it.

• The principle of caution: the amount of
information needed is dependent on the risk the
substance poses: the more severe the
consequences, the more conservative the approach.

These principles specify that the level of validity
required from a model can change depending on the
regulatory decision being made (ECHA, 2008).

2.1.3  Regulatory  use  of  (Q)SAR

Current  experience

(Q)SAR have been used quite widely in EU regulatory
programmes; however, there is little documentation
available to describe why a particular approach was
taken (ECHA, 2008). 

Some ways that (Q)SAR have been used in the past
are listed and summarised below.

• To provide data when testing is not technically
possible

• To provide data when it is not available for a
substance that is not a priority

• To assess the reliability of measured data

• To estimate properties for a range of components
in a multi-constituent substance

• To provide information on environmental effects
and estimate environmental fate data

• To argue against the need for other tests to be
done; the absence of a reactive substructure can 
be used to justify the omission of some tests

• To argue for other more unusual testing to be
performed

• To provide information about mode of action 
and sensitivity for ecotoxicity tests

• To provide supporting information for mode 
of uptake or toxicokinetics

Ways that (Q)SAR have been used in classification
and labelling include the following.

• Self-classification: A number of industry sectors
have published guidance for the self- classification
of chemicals. To support the self-classification
process, the Danish Environmental Protection
Agency (EPA) has published an advisory list for
self-classification of dangerous substances that was
developed using the Danish EPA (Q)SAR database
(ECHA, 2008).

• EU classification according to Directive
67/548/EEC: Classifications in Annex I of the
directive (now in Annex VI of the Regulation on
classification, labelling and packaging of
substances and mixtures – CLP) have been agreed
by EU member states and are legally binding. The
criteria by which decisions on classification and
labelling are made under this directive are largely
based on experimental results but, where
appropriate, validated (Q)SAR can be used
(ECHA, 2008). Likewise, under CLP, a WoE
approach can be used, which can include (Q)SAR.

Ways that (Q)SAR have been used in persistence,
bioaccumulation and toxicity (PBT) assessment and
very persistent and very bioaccumulative (vPvB)
assessment include the following.

• In combination with experimental data

• For the selection of PBT candidates where
experimental data did not exist or were 
considered unreliable

• To confirm or negate PBT status

• As an initial screening exercise

• To deselect PBT candidates from further
consideration

• For short-term aquatic toxicity to algae, fish 
and Daphnia

• To evaluate constituents of multi-component
mixtures
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The performance of (Q)SAR analysis is required for
two aspects of the evaluation of pesticides in the EU.

1 Where a new impurity is present in a new source
of a pesticide active substance, or the levels of 
an existing impurity are increased significantly, 
a (Q)SAR should be performed and any alerts
compared with alerts produced by the active
substance itself (EC, 2011). 

2 (Q)SAR is cited as a technique of potential value
in the evaluation of pesticide metabolites that can
leach into groundwater at levels above 0.1 μg l-1
(EC, 2003).

(Q)SAR has also been proposed as one of the tools 
of potential value for use in other areas of pesticide
assessment where there are limited data available, for
example in assessment of metabolites present in edible
parts of treated crops.

(Q)SAR analysis is generally performed as a
standalone approach, or in combination with other
techniques in the hazard assessment of environmental
contaminants and food flavourings, as test data are
rarely available for these chemicals and/or there are 
no legal instruments to enforce testing. 

Since (Q)SAR are mathematical models based on 
an underlying dataset, they have an inherent degree 
of uncertainty. This is caused by two main factors.

• The variability of the original data

• A model only represents part of the real situation;
it cannot model all types of mechanism or
chemical. 

2.1.4  Reporting  formats

When using (Q)SAR instead of test data, it is
important that adequate and reliable documentation is
provided. Several (Q)SAR reporting formats have been
developed that demonstrate the documentation required
for (Q)SAR. These are designed to provide a standard
framework for the key information about (Q)SAR and
to ensure the same information is available to industry
and regulators alike (ECHA, 2008). 

There are two different reporting formats, designed 
to capture different types of information.

1 The (Q)SAR model reporting format (QMRF)
includes a description of the algorithm, the model
development and validation according to the
OECD principles and evaluation studies performed
with the model (ECHA, 2008). The structure of the
QMRF is designed to evaluate the (Q)SAR model 

according to the OECD validation principles and it
should be used to facilitate the regulatory process.
The QMRF has been agreed at OECD level. The
QMRF may also contain information about the
original dataset to develop the model and the test
set, that is chemical name, identifying numbers
(e.g. Chemical Abstracts Service (CAS) number),
simplified molecular-input line-entry system
(SMILES), IUPAC International Chemical
Identifier (InChl), format used to encode molecular
structures (mol file), structural formula, values for
the dependant variable and for the descriptors
(ECHA, 2008). 

2 The (Q)SAR prediction reporting format (QPRF)
explains how the estimate was derived by applying
a specific model to a specific substance. It should
include information of the model prediction, the
endpoint, the substance modelled, the relationship
between the substance and the applicability
domain, analogues of the substance and the
relationship between the predicted endpoint and
the regulatory endpoint (ECHA, 2008). In other
words, it is a framework to evaluate the specific
substance by the chosen model. The prediction
made for the query chemical should be presented
and assessed for reliability, making reference to 
the QMRF. 

These reporting formats collectively provide a
comprehensive description of the use of the (Q)SAR
and other information required for the assessment of
the substance. The structure of the formats is not
meant to be fixed, and it is expected that they will
evolve as experience is gained, but they should be
designed to ensure transparency, consistency and
acceptability (ECHA, 2008).

Some examples of reporting formats are given in 
the OECD’s guidance on the validation of (Q)SAR
models (OECD, 2007a). 

2.1.5  Computational  tools  for  applying  (Q)SAR

Introduction:  (Q)SAR  and  knowledge-bbased  tools

There is a wide variety of publicly available and
commercial tools for the development and application
of (Q)SAR. These include tools for data management,
data mining, descriptor generation, molecular
similarity analysis, analogue searching and hazard
assessment (ECHA, 2008).

If any (Q)SAR model is intended as a replacement 
for experimental data, the model should be validated
according to the OECD principles and documented
using the appropriate reporting formats, as described
in previous sections (ECHA, 2008).
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Summary  tables  of  computational  tools

Some computational tools can be regarded primarily
as databases used for data management, data mining
and analogue searching. Other computational tools are
primarily (Q)SAR applications for toxicity and/or
endpoint prediction. Some of the most commonly 
used of these are presented in Table 2.4 and 
Table 2.5 below.

It has been pointed out that most of the publications
by software developers claim good predictions, often
with better than 90% concordance. However, valid
comparisons of performance need to be carried out
independently of software developers, using a given
test set. Of course, no test set gives perfect coverage
of chemical or biological space, and different test sets
will almost always give different results (Cronin &
Madden, 2010).

Improved predictivity can often be achieved by
combining the predictions from two or more expert
systems and/or (Q)SAR; this is most probably because
individual prediction errors are to some extent 

averaged out. A consensus prediction can simply 
be the arithmetic mean of all predictions, or it can
involve using a leverage-weighted mean, in which the
most predictive model has the greatest contribution.
For classification endpoints, using consensus-positive
predictions from any two or more programs can yield
improved predictivity (Cronin & Madden, 2010).

There are now several in silico tools for the prediction
of a range of toxicity endpoints. All depend on the
quality and availability of experimental data; these are
to some extent still lacking and are, in some cases, of
dubious accuracy. Hence, a primary ongoing need for
in silico prediction is more and better experimental
data available in the public domain.

There has been a rapid increase in recent years in 
the number of software models available for toxicity
prediction. Many of these meet the OECD Principles
for the Validation of (Q)SAR, but some do not – or 
at least it is not clear from the limited information on
company websites whether or not they do so. It is
recommended that all developers and marketers of
toxicity prediction software publish this information.
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Danish (Q)SAR database

Developed for JRC by the
Danish EPA

Database of (Q)SAR
predictions for 166 000 organic
chemicals & a range of
endpoints

Contains approximately 60
predictions for each chemical
including a yes/no statement
for MultiCase predictions for
assessment of the applicability
domain

Has endpoints for
physiochemical properties, fate,
ecotoxicity, absorption,
metabolism & toxicity

Search by structure,
(substructure/exact match),
identifiers (e.g. name, CAS) 
& endpoint

JRC (Q)SAR Model Database

Currently being developed by
JRC

Searchable tool for linking
chemicals to (Q)SAR

(Q)SAR summaries being
compiled in the standard
(Q)SAR model reporting
format 

Search by chemical (CAS, EC
number, structure), endpoint,
descriptors & model author

Table  2.4  Summary  table  of  the  most  commonly  used  databases  

Name Overview, uses Details, what it does Search options

Ambit & Ambit Discovery

Developed by CEFIC 

Data management, searchable
databases, tools for grouping &
applicability domain
assessment

Ambit stores chemical
structures, identifiers (e.g.
CAS), attributes (e.g. molecular
descriptors), experimental data,
test descriptors and literature
references; software generates
2-D & 3-D molecular
descriptors

Ambit Discovery performs
grouping, assesses applicability
domain with statistical methods
or using mechanistic
understanding or structural
similarity

Search by name, CAS,
SMILES, substructure,
structure-based similarity 
& chemical identifier

Source: ECHA (2008)
CEFIC, Conseil Européen des Fédérations de l’Industrie Chimique; Danish EPA, Danish Environmental Protection Agency; 
JRC, Joint Research Council 
Sources of these databases are given in Appendix 3 
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Table  2.5  Summary  table  of  the  most  commonly  used  computational  (Q)SAR  applications  for  
endpoint  prediction  

Name Overview, uses Details, what it does

Toxtree

Developed for
JRC by
Ideaconsult Ltd

Cramer scheme: uses chemical structures to estimate the threshold of
toxicological concern

Uses recognised pathways for metabolic deactivation/activation,
toxicity, presence in food and endogenous metabolites to categorise
substances into three classes based on their predicted toxicity, Class 3
being the most toxic

Estimates different types of toxic
hazard using structural rules Includes
options for applying the Cramer
decision tree

(Q)SAR Toolbox

Developed by
OECD

Summarises information about the validation results of each model
according to the OECD validation principles to enable user to decide
which are appropriate for that particular regulatory purpose

Lists analogues with their estimates

Gives information about metabolite activation/detoxification

Can be used to implement stepwise
approaches for analogue and
categories

OncoLogic® Uses rules from SAR, mechanisms of action and epidemiology studies

Produces assessment of potential carcinogenicity and detailed
reasoning for this outcome from information about the compound
structure 

Consists of four subsystems that evaluate fibres, metals, polymers and
organic chemicals

Expert system that assesses potential
of chemicals to cause cancer

HazardExpert

Developed by
CompuDrug Ltd

Calculates log P and pKa

Default knowledge base is based on information from US EPA
and information collected by CompuDrug Ltd 

Rule-based system allows the user to understand, expand, modify 
or optimise the data 

Covers the following endpoints: oncogenicity, mutagenicity,
teratogenicity, membrane irritation, sensitisation, immunotoxicity 
& neurotoxicity 

Has a link to MetabolExpert system

Predicts toxicity, bioavailability &
bioaccumulation of compounds

TOPKAT

Developed by
Accelrys Inc.

16 models for the following endpoints: aerobic biodegradability, Ames
mutagenicity, Daphnia magna EC50, developmental toxicity, fathead
minnow LC50, FDA rodent carcinogenicity, NTP rodent
carcinogenicity, ocular irritancy, log Kow, rabbit skin irritancy, rat
chronic LOAEL, rat inhalation toxicity LC50, rat MTD, rat oral LD50,
skin sensitisation & WoE rodent carcinogenicity

Models are typically based on large toxicological datasets

Statistical system consisting of suite
of (Q)SAR for a range of endpoints

Derek Nexus

Developed by
Lhasa Ltd

Has over 504 alerts covering wide range of toxicological endpoints
(mutagenicity, carcinogenicity, organ toxicity, reproductive toxicity,
skin irritation and skin sensitisation) 

Alerts consist of a toxicophore (substructure thought to be responsible
for toxicity) and literature references, comments and examples

Main strengths are in mutagenicity, carcinogenicity and skin
sensitisation 

Rules are based on mechanisms of action, chemical class or empirical
relationships 

Has nine levels of confidence for result: certain, probable, plausible,
equivocal, doubted, improbably, impossible, open and contradicted 

Has been found to comply well with the OECD Principles for the
Validation of (Q)SAR

Concordances of 60%, 60% and 53% have been reported for skin
sensitisation, mutagenicity and carcinogenicity, respectively 
(Cronin & Madden, 2010)

Knowledge-based expert system 

Uses knowledge of structure–toxicity
relationships, mechanisms of action 
& metabolism
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Faced with the need to make a toxicity prediction, how
should one decide which model to use? There are
several considerations to take into account. First, of
course, is the selection of one or more models that
offer the requisite endpoint. Then comes the key aspect
of cost. A few models (e.g. CAESAR, OncoLogic,
TIMES, Toxtree) are freely available. The price of
others varies greatly (Cronin & Madden, 2010).

2.1.6  Computational  (Q)SAR  tools  for  human
health  endpoints

Tools  and  databases  for  prediction  of
toxicokinetic  properties

As the overall toxicity elicited by a chemical may be
determined as much by its kinetic properties as its
intrinsic toxicity, prediction of biokinetic properties 
is essential in assessing the overall toxicity of 
a substance. 
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Source: ECHA (2008)
MTD, maximum tolerated dose 
Sources of these applications are given in Appendix 3

Name Overview, uses Details, what it does

Meteor

Developed by
Lhasa Ltd

Based on biotransformation rules

Has an integrated reasoning model which allows the system to
evaluate the likelihood of each biotransformation taking place;
potential biotransformations can be compared 

User can analyse the query at different search levels, depending on
likelihood of biotransformations

User can also add own rules, search metabolic tree and view/graph/use
individual biotransformations

Predicts metabolic fate of a query
chemical using knowledge of
structure–metabolism rules

CATABOL Gives a quantitative assessment by using a mechanistic approach

Biodegradability simulator includes a library of transformations,
ordered by a hierarchy; these transformations are adjusted to
reproduce the degradation pathways for over 500 chemicals

Simulates biodegradation pathways
and predicts physicochemical & toxic
endpoints

The CASE
family of
methods

Developed by
Klopman &
Rosenkranz

Uses fragment-based technology and statistical analysis of a database
of chemicals and their toxicity data

The program checks the chemical substructures for biophores
(substructures thought to be responsible for activity) and orders the
chemicals according to statistical significance (i.e. the top biophore is
the one responsible for the largest number of active molecules); next
the program looks for ‘modulators’, substructures that significantly
alter the activity of the biophores 

This information is then used to predict the biological activity of new
chemicals that are not in the dataset 

It covers the following endpoints: carcinogenicity, mutagenicity,
teratogenicity, irritation, developmental toxicity, acute toxicity &
biodegredation

A variety of models for a multitude of
endpoints and hardware platforms,
including CASE, MULTICASE,
MCASE, CASETOX & TOXALERT

TIMES (tissue
metabolism
simulator)

Developed by
Laboratory of
Mathematical
Chemistry (LMC)

(Q)SAR models for predicting toxicity of metabolites 

Can predict skin sensitisation, mutagenicity, chromosomal aberration
& ER (oestrogen)/AR (androgen) binding affinities of chemicals,
while also accounting for metabolic activation

Can also predict toxicity to aquatic species

Models toxicity for two types of toxicochemical domain: reversible
(non-covalent) and irreversible covalent bioreactive chemicals

Models metabolism using a combination of rules and a library of
biotransformations and abiotic reactions

User can calibrate probability of metabolites according to the
situation, e.g. to limit the metabolites to just the likely ones

Consideration can be given to physicochemical properties, e.g. water
solubility or log Kow

Integrates on the same platform
metabolic simulators and (Q)SAR
models for predicting toxicity of
selected metabolites
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Public availability of large, high-quality datasets of
toxicokinetic properties is limited, although increasing
awareness of the importance of such properties is
leading to more data being published. Much of the
available toxicokinetic data and models relate to
pharmaceutical chemicals. This presents two
difficulties. First, the available data are skewed
towards those chemicals which are
pharmacokinetically viable. Secondly, the chemical
space covered by such models may not be
representative of the chemical space of
environmentally relevant chemicals. Indeed the lack 
of kinetic information for non-pharmaceuticals
presents a real challenge in the risk assessment of
industrial chemicals. Another important consideration
in the modelling of toxicokinetics is that, whereas
toxicity can be related to specific interactions, kinetic
characteristics are often associated with more global
properties of the molecule such as the influence of 
the log Pow of the compound on its ability to penetrate
membranes (Cronin & Madden, 2010).

Despite difficulties in the modelling of toxicokinetics,
a large number of in silico prediction tools have been
developed, including models for human intestinal
absorption, human oral bioavailability, blood–brain
barrier permeability, plasma protein binding,
metabolism and excretion or clearance.

Metabolism is of particular relevance to toxicity
prediction because of the potential to generate toxic
metabolites from innocuous parent compounds. For
this reason, methods to predict metabolism have
generated much interest. Many of these models are
based on knowledge of general reaction chemistry 
or specific, known metabolic pathways relevant to 
the functional group identified within the molecule
(Cronin & Madden, 2010).

The vast majority of available software tools are
commercial. The tools differ greatly in terms of their
capabilities and applications (see Table 2.6 below).

QSAR for toxicokinetic properties tend to be local
models; that is, they are based on small, homogeneous
datasets, with reliable predictions being obtained for

the compounds falling within the model’s applicability
domain. Relatively few models have been developed
on structurally diverse datasets containing more than
100 compounds. However, the accuracy of predictions
across structurally diverse datasets can be improved
by the application of consensus modelling, which
transfers the strengths of multiple single models to 
a final consensus one (JRC Report, 2011).

Tools  and  databases  for  acute  toxicity  prediction
There are only a few (Q)SAR and expert systems that
are capable of modelling acute toxicity; this is because
the endpoint itself is very complex. Acute toxicity
could be a result of several mechanisms acting on the
whole body resulting in a wide spectrum of biokinetic,
cellular and molecular events, making it difficult to
model. Converting the complex, whole-body
phenomena related to acute toxicity into a simple
number necessarily leads to a loss of information.
Also, available data are highly variable, having been
generated by different laboratories, protocols, animal
species and strains. This undermines the reliability 
and repeatability of acute toxicity measurements.
These facts complicate the modelling process 
(JRC Report, 2011). 

Most literature-based models are restricted to single
classes of chemicals, for example phenols, alcohols 
or anilines (ECHA, 2008). Some examples of the use
of (Q)SAR to predict acute toxicity are listed below.

• Acute inhalation toxicity – Some regression
models have been developed to predict inhalation
toxicity for volatile substances; these typically use
vapour pressure and boiling point as parameters.
For example, the estimation of acute neurotoxicity
by Cronin (1996). 

• LD50 prediction – There are a few sets of models
that predict the LD50 for small sets of compounds.
For example, Hansch & Kurup (2003) used data
from Cope (1939) to develop a (Q)SAR to predict
the LD50 of barbiturates in female white mice.

• Human toxicity – The human LD100 values of
various drugs have been estimated using data 
from King (1985). 
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Sources of these tools are given in Appendix 3

Table  2.6  Commercially  available  computational  tools  to  predict  toxicokinetics

Software Provider Predicted toxicokinetic properties

Discovery Studio ADMET Accelrys Absorption, plasma protein binding, CYP2D6 binding
MetabolExpert CompuDrug Metabolic fate of compound
Meteor Lhasa Metabolic fate of compound

ADME Boxes ACD Labs Absorption, bioavailability, plasma protein binding,
volume of distribution

META/METAPC (from the CASE 
family of models)

MultiCASE Metabolic transformations
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• Prediction of in vitro effects – A number of
(Q)SAR for cytotoxicity have been developed for
in vitro testing; these are not currently directly
relevant to the assessment of acute toxicity for
regulatory purposes, but since reliable (Q)SAR can
be developed for cytotoxicity of defined groups of
chemicals in vitro, these methods look promising
for the future (ECHA, 2008).

Some information about the acute toxic effects and
corrosivity of a substance can be gained from its
physicochemical properties. The vapour pressure and
log Kow are examples of properties that determine the
feasibility of exposure and the possible distribution in
the airways. Particle size is also important when
looking at deposition of the substance in the
respiratory tract and potential toxicity. Some
properties are also important when assessing potential
dermal exposure; these include log Kow, molecular
weight, degree of hydrogen bonding and melting point
(ECHA, 2008).

Some (Q)SAR can be used to predict dermal
penetration or metabolic pathways. However, these
have not been extensively validated with experimental
data, and so these predictions can only be used for
hazard identification or risk assessment as part of 
a WoE approach (ECHA, 2008).

Some currently available software tools (e.g. TOPKAT
and MCASE) are useful for predicting acute toxicity
in categorical terms (e.g. in terms of Globally
Harmonised Systems – GHS – classification).
However, these tools should be further investigated 
in relation to the apparently high degree of false
negatives generated, since this would be undesirable
in a regulatory setting (JRC Report, 2011).

Databases containing information on acute toxicity
which may be suitable for the development of (Q)SAR
include Acutoxbase, ChemIDplus, CEBS and RTECS
(JRC Report, 2011).

Tools  and  databases  for  repeated  dose  
toxicity  prediction

Chronic repeated dose toxicity is currently assessed 
in rodents, and an important challenge for the future 
is how to measure the health risks from repeat
exposure without the use of animals. Such a task is
very difficult because of the wide range of effects that
could result from prolonged and repeated exposure
(Kimber et al., 2011). Repeated dose toxicity is not
really a single endpoint, but a common term for a
multitude of biological effects that have different
mechanisms, occur in different tissues and organs and
over different time scales. This represents a challenge
for (Q)SAR modelling, which should ideally focus on
groups of chemicals with a common mode of action.

The use of (Q)SAR in assessing chronic toxicity is
very limited. However, the JRC is currently building
an inventory of evaluated (Q)SAR models for
regulatory use (the JRC (Q)SAR Model Database, 
see Section 2.1.5 for details; ECHA, 2008).

Before any in vivo testing is conducted for repeated
dose toxicity, the physicochemical properties of the
substance should be considered. These properties can
be used to determine whether the substance can be
absorbed following oral, dermal or inhalation
exposure and whether the substance itself or its
metabolites are likely to reach the target organ or
tissues. They are also used to decide on the
appropriate administration route for any in vivo testing
and whether such testing is technically possible.
Substances that are, for example, highly volatile,
highly reactive or unstable may be impossible to test
(ECHA, 2008).

For repeated dose toxicity, (Q)SAR are used to give
an indication of the mechanisms which may occur and
possible organ or systemic toxicity. They are currently
not well validated for use in repeated dose toxicity
because there is a large number of potential targets
and mechanisms that may be associated with a
substance. Therefore at present there are no
recommendations regarding the use of (Q)SAR for
routine use in this area. When considered alongside
other data, (Q)SAR can be used as part of a WoE
approach and they can be used to support the use 
of read-across or grouping (ECHA, 2008).

At present, the most commonly used software tool 
for repeated dose toxicity prediction is TOPKAT, 
and despite the lack of transparency in its predictions,
several studies (Venkatapathy et al., 2004; Tilaoui 
et al., 2007) have shown that it gives reasonable
predictions for a range of chemicals (including
pesticides and industrial chemicals). Another more
recently developed tool is a module of MolCode
Toolboxes. Predictions from such tools could be used
in a WoE approach along with additional data.
Additional research investigations into the
applicability of TOPKAT and MolCode Toolboxes
across a wide range of chemicals would be
worthwhile. In addition, a transparent expert system 
or battery of (Q)SAR models needs to be developed
for this endpoint (JRC Report, 2011).

There are three main databases or datasets suitable 
for the development and assessment of (Q)SAR for
repeated dose toxicity. The RepDose database
developed by the Fraunhofer Institute8 contains
NOAEL and LOAEL for over 650 industrial
chemicals, but has not been made publicly available.
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8 www.fraunhofer-repdose.de [accessed March 2013]
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Munro et al. (1996) developed a database of 612
structurally well-defined organic chemicals, divided
into the three structural Cramer classes (Cramer et al.,
1978) and associated with 2944 (subchronic and
chronic) NOAEL derived from non-carcinogenic
endpoints in oral rodent or rabbit studies. This
database has provided the basis of the TTC concept
(JRC Report, 2011).

In addition to models for repeated dose toxicity, a
limited number of in silico tools have been developed
for predicting organ-specific and system-specific
toxicity. For example, among the commonly used
software tools, Derek Nexus estimates neurotoxicity
using the following structural alerts: γ-diketone or
precursor, acrylamide or glycidamide, nitroimidazole,
carbon disulfide or precursor, pyrethroid, 1-methyl-
1,2,3,6-tetrahydropyridine, lead or lead compounds
and organophosphorus ester (JRC Report, 2011).

Tools  and  databases  for  prediction  of  irritant  
or  corrosive  properties

Some information about irritation and corrosion
caused by chemicals can be gained by checking the
pH of the substance. Those with an extreme pH value
(less than two or greater than 11.5) are generally
presumed to be corrosive to the skin and/or severely
irritant to the eyes (ECHA, 2008).

The existence of a SAR provides justification for the
use of read-across methods. The presence or absence
of structures and substructures within the substance
that have corrosion or irritation potential can be used
to predict these effects. Non-reactive chemicals do not
normally exhibit corrosive or irritant effects, although
irritant contact dermatitis can result from contact with
substances that have defatting properties, such as
organic solvents. An example of a simple SAR that is
used as an alert for corrosivity is the hydroperoxide
group of substances; this is because they are acidic
and oxidising in nature. SAR have been incorporated
into the BfR (Institute for Risk Assessment, Germany)
rule-base and the Skin Irritation Corrosion Rules
Estimation (SICRET) Tool. (Q)SAR and expert
systems for skin irritation and corrosion have also
been described. Mostly they have been developed
from small datasets of specific compounds, but some
larger and more diverse datasets do exist.
Physicochemical properties such as acidity, basicity,
hydrophobicity and molecular size are used for
homologous substances, whereas common structural
features are used for heterogeneous groups of
chemicals (ECHA, 2008). Table 2.7 and Table 2.8
show the available (Q)SAR for skin and eye irritation
or corrosion (ECHA, 2008).

It is important to remember that models have not
necessarily been developed for regulatory purposes

and so they should be assessed in terms of whether 
the predicted endpoint corresponds to the regulatory
endpoint of interest (ECHA, 2008).

Tools  and  databases  for  prediction  of  sensitising
potential  
Skin sensitisation

The skin sensitisation potential of a chemical is related
to its ability to react with proteins in the skin (the key
molecular initiating event) and with subsequent
recognition by the immune system. The initiating
event is usually dependent on the electrophilic
reactivity of the substance or its derivatives. There are
various types of electrophile–nucleophile reactions in
skin sensitisation; perhaps the most frequently
encountered are Michael-type reactions, SN2 reactions,
SNAr reactions, acylation reactions and Schiff-base
formation. These chemical reaction mechanisms can
serve as a means of describing the domain of
applicability of a (Q)SAR. Because there are defined
chemistries that are associated with the induction of
skin sensitisation through the key molecular initiating
event, this is likely to be one of the endpoints for
which (Q)SAR are most useful. However, to date
there are relatively few published in peer-reviewed
literature; those that are described include local and
global (Q)SAR and expert systems (ECHA, 2008).

The majority of local models for direct-acting
electrophiles have been based on the relative
alkylation index approach (RAI). This is based on the
concept that the degree and magnitude of sensitisation
depends on the degree of covalent binding to a carrier
protein. It quantifies the relative degree of haptenation
as a function of dose, chemical reactivity expressed as
a relative rate constant for reactions with a model
nucleophile, and the hydrophobicity (expressed as
calculated log P values). This method has been used to
assess a wide range of skin sensitising chemicals, for
example sulfonate esters, sulfones, aldehydes and
diketones. The method is mechanistically robust, but
available models are still limited and require a
reasonable knowledge of chemistry (ECHA, 2008).

Global statistical models have been developed by the
application of statistical methods to biological data.
These are perceived as able to predict outcomes for a
wider range of chemicals, but they often lack a clear
mechanistic reasoning and are difficult to interpret
from a chemistry perspective. The domain of
applicability of these models can be variable; some are
well described, whereas others require judgement to
determine the relevance of the model (ECHA, 2008).

Expert systems that have models for skin sensitisation
are presented in Table 2.9 below.
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The choice of model depends on the chemical of
interest, the underlying dataset and the applicability
domain of the model. For a well-characterised
chemical domain, a local (Q)SAR will give a robust
prediction for that particular domain; however, if the
mechanism is not as well understood, one or more of
the expert systems will provide a better estimate.
Although these systems are not as transparent, they 
do provide supporting information to enable the user
to evaluate the robustness of the prediction (ECHA,
2008).

The prediction of non-sensitisers is limited and model
predictions should be interpreted carefully and
considered alongside other information such as read-
across, the potential for activation and skin
permeability. For example, some substances are not
themselves skin sensitisers but may be activated either

metabolically or abiotically (e.g. by oxidation) to
substances that can induce sensitisation. In evaluating
the output of a model, it is therefore necessary to be
aware if this has been taken into consideration or not.
The use of physicochemical information and its
position in the sequence that leads to prediction may
also be important; Derek Nexus, for instance, regards
any substance with a log Kp < -5 as an ‘impossible’
skin sensitiser, since it should not penetrate intact
skin. However, it may be necessary to predict the skin
sensitisation potential of such a substance if it is
deliberately applied to damaged skin, such as may 
be the case with medicinal products.

Recently, attention has focused on an in chemico
approach9 to the prediction of skin sensitisation
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Table  2.7  Overview  of  literature-bbased  (Q)SAR  models  used  for  skin  and  eye  irritation  or  corrosion  

Reference Type of Applicability QMRF Notes
model domain developed?

Berner et al.,
1988, 1990

Mathematical model pKa related for acids No Provides evidence of pKa as predictor of skin
irritation for acids

Current knowledge does not give clear
recommendations about how to use pKa
information

Nangia et al.,
1996

Mathematical model pKa related for bases No Provides evidence of pKa as predictor of skin
irritation for bases

Current knowledge does not give clear
recommendations about how to use pKa
information

Barratt, 1996 Statistical model Electrophiles No Discriminates between corrosives and non-
corrosives

Does not provide transparent algorithm, has
low goodness-of-fit and poor predictivity, not
recommended for regulatory use

Smith et al.,
2000

Statistical model Esters No Discriminates between irritants and non-
irritants

Does not provide transparent algorithm;
limited regulatory use

Barratt, 1996 Statistical model Neutral organics No Discriminates between corrosives and non-
corrosives

Does not provide transparent algorithm, has
low goodness-of-fit and poor predictivity, not
recommended for regulatory use

Gerner &
Spielmann
2005 

Rule-based model New chemicals
database, organic
chemicals

Yes

Barratt, 1995 Statistical model Acids, bases, phenols 
& pKa

No Used pKa to predict effect of acids and bases

Current knowledge does not give clear
recommendations about how to use pKa
information

9 see www.inchemicotox.org/ [accessed March 2013]

Source: ECHA (2008)
QMRF: (Q)SAR model reporting format
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Table  2.8  Overview  of  computerised  models  used  for  skin  and  eye  irritation  and  corrosion  

Name of Type of Applicability QMRF Notes
model model domain developed?
TOPKAT Mathematical model

using connectivity
descriptors

Organic chemicals Yes (for skin
irritation)

Predicts the probability that a substance is a
weak/mild moderate/severe irritant

Gives similar structures, the experimental
result and whether the prediction is in the
applicability domain of the model

Algorithm not transparent – there is no
external validation & no mechanic reasoning;
cannot be used as a stand-alone method

MultiCASE Mathematical model
using fragments

Organic chemicals No Can be used to predict eye irritation, but
relating scoring system to regulatory
classifications is unclear

Provides structural alert, information on
internal validation and whether it is in
applicability domain

Does not have external validation or
mechanistic reasoning, so cannot be used 
as a stand-alone method

BfR rule-base Rule-based model New chemicals
database, organic
chemicals

Yes Uses physicochemical properties and
substructural molecular features to predict EU
risk phrases for skin irritation and corrosion

Algorithms and applicability domain are
transparent, rulebase has been validated by
JRC and RIVM and a mechanism of action
can be deduced

For chemicals within the applicability
domain, rules can be used on their own to
predict hazards, therefore can be used for
classification; whether this is appropriate
should be determined on case-by-case basis

HazardExpert Organic chemicals
using structural
alerts

Organic chemicals No Includes membrane irritation among human
health effects, but this endpoint not clearly
defined

Can be used as supplementary information in
a WoE approach, but using it directly for
assessment of skin or eye irritation not
recommended

Derek Nexus Expert system using
structural alerts

Organic chemicals 
and some metals

Yes Rule-base for irritation that is regularly
updated

Has 25 structural alerts for prediction of skin
irritancy/corrosion

If Derek Nexus does not predict irritancy, this
does not mean that there is no effect; could be
that none of known alerts was present, or it
was outside the applicability domain

Algorithm is transparent but it not considered
validated, so cannot be used as a stand-alone
method

Cannot be used to predict non-
irritation/corrosion

Source: ECHA (2008)
Sources of these models are given in Appendix 3
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potential. In this approach, chemical (protein)
reactivity, mechanistic read-across (see Section 2.2)
and physicochemical data are assessed. One method is
the Predictive Quantitative Mechanistic Model, which
can be used to predict sensitisation potency; one such
model has been developed for Michael acceptors
(Roberts, 2009).

Respiratory sensitisation

Attempts to model respiratory sensitisation have been
hampered by the lack of a predictive test protocol for
assessing chemical respiratory sensitisation. (Q)SAR
models are available but these have largely been based
on data for chemicals reported to cause respiratory
hypersensitivity in humans. Respiratory sensitisation
is often associated with defined structural alerts, in
particular cyclic anhydride, isocyanate and diamine
groups. 

The MCASE group has developed three models for
respiratory sensitisation. The Danish (Q)SAR
Database has an in-house model for which estimates
can be extracted from the online database10. Derek
Nexus contains several alerts derived from a set of
respiratory sensitisers (ECHA, 2008).

Tools  and  databases  for  mutagenicity  prediction

There is a range of non-test methods that can help to
provide information about the mutagenicity of a
substance, including inspection of the chemical
structure, read-across, expert systems, metabolic
simulators, local and global (Q)SAR. If testing data
exist for the substance, non-testing information can be
used in a WoE approach, to gain a better understanding
of the mechanisms or confirm results. If experimental
data are not available, this information can help to
design the tests needed (ECHA, 2008).

Certain structures or fragments in a chemical can 
be associated with mutagenicity, often through
mechanisms of reaction with DNA. The following
references have information about structures and
fragments that are associated with mutagenicity, 
that is the super-mutagen model and the subsequent
builds on this model (Ashby, 1988; Ashby, 1993;
Munro et al., 1996).

There are many local (Q)SAR available in the
literature that predict data for genotoxic endpoints for
chemicals with related structures. When the substance
is within the applicability domain, these models may
be the best tools to predict mutagenic and genotoxic
endpoints. The predictivity of the models should be
assessed on a case-by-case basis as the quality of
reporting can vary. (Q)SAR that contain mechanistic
information are preferred (ECHA, 2008).
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Sources of these tools are given in Appendix 3

Table  2.9  Computational  tools  to  predict  skin  sensitising  potential  sensitisation

Software Overview Details
TOPKAT Has two sets of models that

calculate whether the
chemical is a sensitiser or a
strong sensitiser

The first set of models discriminates between non-sensitisers and
sensitisers 

The second set of models examines the potency of the sensitiser
(weak/moderate vs strong)

TOPKAT only makes predictions for chemicals within the
applicability domain of the model

MCASE

(From the CASE family of
models) 

The MCASE models have
been developed for skin
sensitisation

Includes two sensitisation modules

The CASE approach uses a probability assessment to determine if a
structural fragment is associated with toxicity

Estimates from one of these models are included in the Danish EPA
(Q)SAR database (located on the JRC website)

TIMES-SS

Tissue metabolism simulator
for skin sensitisation

Evaluates reactivity of
chemicals to predict skin
sensitisation

A hybrid between knowledge-based & statistically based expert
system

Uses a skin metabolism simulator

Contains 236 spontaneous and enzyme-controlled reactions

Covalent interactions with skin proteins are described by 
47 alerting groups

Derek Nexus The skin sensitisation
knowledge base contains 
70 alerts for skin sensitisation
and photoallergenicity

Derek Nexus is based on toxicophores, literature references,
comments and examples

10 available at
http://ihcp.jrc.ec.europa.eu/our_labs/predictive_toxicology/
qsar_tools/DDB [accessed March 2013]
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Most global (Q)SAR for mutagenicity are commercial,
and so for many of these the data within the modelling
dataset is not available to the user (ECHA, 2008). The
most common genotoxicity endpoint for global models
is the Ames test. Examples of systems that can predict
this endpoint are Derek Nexus, MultiCASE, TOPKAT,
OASIS and the Danish EPA (Q)SAR database 
(ECHA, 2008). 

A number of databases and computational tools used
for the prediction of mutagenicity are presented in
Table 2.10.

The JRC conducted a review of publicly available and
commercial models across all toxicology endpoints.
They found that the most commonly used systems were
Derek Nexus, MultiCASE, OECD Toolbox, TOPKAT
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Source: ECHA (2008)
PASS: Prediction of Activity Spectra for Substances 
Sources of these tools are given in Appendix 3

Table  2.10  Computational  tools  for  the  prediction  of  mutagenicity  

Software Overview Details
The Danish EPA (Q)SAR
Database

Contains predictions for over
166 000 chemicals and has a
flexible system for searching
parameters and chemical
structure

All models were derived
from MultiCASE software

Contains assorted Ames models

Can also model chromosomal aberrations, mouse lymphoma-TK,
CHO/HPRT gene mutation assays, UDS (rat hepatocytes)
information, Drosophila SLRL, mouse micronucleus, rodent
dominant lethal, mouse SCE in bone marrow and mouse comet 
assay data

ESIS Contains information on chemicals related to EINECS, ELINCS,
NLP and biocide active substances

OECD database on
chemical risk assessment
models

Contains information on
models for mutagenicity and
other endpoints

This was developed to help identify tools for use in research and
development of chemical substances

CAESAR Developed as an EU-funded
project

Statistically based model
using 4225 compounds and
the Kazius–Bursi
mutagenicity database 

Simple to use

Provides data for defined endpoints

Provides an estimate for the Ames test

Provides a prompt when a chemical is outside the domain of
applicability

Provides estimates for six structural analogues within the database

Toxtree Developed by the JRC as an
EU project

Rule-based approach using
Benigni/Bossa and Tox Mic
rule-bases

Simple to use

Provides data for defined endpoints

Provides an estimate of mutagenicity in Salmonella TA100 and
micronucleus formation in rodents 

Toxtree applies set rules for evaluation but does not provide an alert
when the chemical is not covered by the rule-base

Chemical analogues have to be identified and entered separately

Derek Nexus Contains 89 alerts for
bacterial mutagenicity and
77 alerts for chromosome
damage

The chromosome damage
alerts are based primarily on
data from the in vitro
chromosome aberration test,
however additional assays
have been considered when
writing alerts

Derek Nexus does not provide negative predictions; the absence of a
predicted hazard simply means that no relevant alerts were identified;
it does not necessarily mean the absence of hazard

Enhanced NCI Database
Browser

Sponsored by the US
National Cancer Institute

Contains predictions for over
250 000 chemicals for
mutagenicity among other
endpoints

Modelling was done using
PASS

Some of the endpoints contain mechanistic information, for example
alkylating ability and microtubule formation inhibition

Searchable by a wide range of parameters and structure combinations
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and Toxtree. The most highly developed models were
those for genotoxicity. They also assessed the
genotoxicity models using a diverse range of chemicals
and found that Ames test data were highly reproducible.
They also found that publicly available and commercial
models have a very similar performance for
genotoxicity assessment (JRC Report, 2011). 

It has been reported that the accuracy of prediction 
of Ames mutagenicity by Derek Nexus is 65%
(against a dataset of 400 chemicals) and the overall
concordance between mutagenicity predictions and
test data for TOPKAT is 73%. It has also been found
that the predictions for external and independently
chosen test chemicals vary considerably both in terms
of overall accuracy and in terms of relative
proportions of true and false positives. The
observations for TOPKAT and MultiCASE were
similar to those for Derek Nexus. These findings
contrast with the usually good performances reported
by the model developers, as assessed on small
congeneric databases (JRC Report, 2011). 

It has been recommended that when using
computational models for regulatory purposes,
predictions of genotoxicity should not be based on the
use of any single model alone, but on a WoE approach
including information, if possible, from all available
sources (QSAR, read-across, in vitro test methods). 
In addition, the use of batteries of computational tools
that combine high sensitivity models (to minimise
false negatives) with high specificity models (thereby
minimising false positives) is considered to improve
the overall reliability of the prediction. An essential
piece of information is the applicability domain of 
the model, and the reliability of prediction for the
chemical of interest. Unfortunately, this information 
is often not available or easily obtained (JRC 
Report, 2011).

Tools  and  databases  for  prediction  of
carcinogenic  potential

Prediction of carcinogenicity using non-testing data is
currently very challenging because of the multitude of
possible mechanisms that could occur. The most
commonly modelled endpoint for carcinogenicity has
been the rodent bioassay.

Certain structures or fragments in a chemical can 
be associated with carcinogenicity, often through
mechanisms of reaction with DNA. Genotoxicity is
therefore an important factor in carcinogenicity. The
following references have information about structures
and fragments that are associated with carcinogenicity
(USA FDA, 1986; IARC, 2006).

An example of a model for a genotoxic carcinogen 
is described in Franke et al. (2001; ECHA, 2008). 

In general, genotoxic carcinogens have the unifying
feature that they are either electrophiles or can be
activated to electrophilic reactive intermediates 
(pro-electrophiles). The electrophilic theory of
genotoxic carcinogenicity has led to two main
(Q)SAR approaches for modelling genotoxic
chemicals: to identify the electrophilic functional
groups or substructures (i.e. to develop SAR models
based on structural alerts), and to find molecular
descriptors which can be quantitatively related to the
activity of the chemicals (i.e. to develop QSAR; 
JRC Report, 2011).

Carcinogenicity that is not due to genotoxic effects is
far more difficult to predict because of the vast array
of different mechanisms that could be involved. A
unifying scientific theory for the mode of action of
non-genotoxic carcinogens is still missing. For this
reason, (Q)SAR for non-genotoxic carcinogenicity 
are still in an early stage of development. Progress is
being made in this area but the applicability of the
models will be dependent on the mechanism involved
and the chemical class (ECHA, 2008).

Global (Q)SAR exist which attempt to predict the
carcinogenic hazard of diverse groups of substances.
These models can be useful for screening, priority
setting, deciding on testing strategies and hazard
assessment in a WoE approach. Most of these models
are commercial and include OncoLogic, Derek Nexus,
MultiCASE and TOPKAT. The performance of this
type of model is mixed and is dependent on how well
the carcinogenicity is defined in those substances used
to develop and test the model. Freely available models
for carcinogenicity prediction are the Danish EPA
(Q)SAR database and the enhanced US National
Cancer Institute database. 

A number of databases and computational tools 
used for prediction of carcinogenicity are presented 
in Table 2.11.

At present, (Q)SAR methods are more reliable for
predicting genotoxic potential than carcinogenic
potential. Carcinogenicity prediction represents a
considerable challenge owing to the multitude of
possible mechanisms of toxic action. The prediction 
of non-genotoxic carcinogenicity and carcinogenicity
in humans is especially problematic. Models for
predicting carcinogenic potency are lacking.

The accuracy of Ames mutagenicity prediction is
typically 70–75%, whereas for carcinogenicity it 
is generally between 50–75%, depending on the
(Q)SAR and dataset used. This is reasonable taking
into account the complexity of the carcinogenicity
endpoint, and the fact that models do not explicitly
include ADME properties, which could be critical
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steps in the carcinogenic process. An important
direction for future research would be to incorporate
ADME considerations in the overall prediction. It 
will also be important to build more models for non-
genotoxic mechanisms of action (JRC Report, 2011).

Tools  and  databases  for  reproductive  and
developmental  toxicity  prediction

Some information on reproductive toxicity can be
obtained from the physicochemical properties of 
the substance (ECHA, 2008).

The physicochemical properties of a substance can
give information about whether it is likely to be
absorbed by a particular exposure route and whether 
it can cross placental, blood–brain barriers or be

secreted in milk. Physicochemical properties can also
be used in a WoE approach (ECHA, 2008).

There are currently no formal criteria or structural
alerts for reproductive toxicity and a large number 
of potential mechanisms are associated with it, many
of which are unknown or only partially understood 
at the molecular and cellular level. Along with
carcinogenicity studies, reprotoxicity studies are
among the most costly and time consuming
experimental procedures. Furthermore, reprotoxicity
testing requires the highest number of test animals.
For all these reasons, the development of alternative
(non-animal) methods for reprotoxicity assessment is 
a high political priority. 
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Source: JRC Report (2011)
Sources of these software tools are given in Appendix 3

Table  2.11  Computational  tools  for  the  prediction  of  carcinogenicity  

Software Overview Details
The Danish EPA (Q)SAR
Database

Contains predictions for over
166 000 chemicals and has a
flexible system for searching
parameters and chemical
structure

All models were derived
from MultiCASE software

Contains eight MultiCASE FDA cancer models, rodent carcinogenic
potency, hepatospecificity, oestrogenicity and aryl hydrocarbon
receptor binding

ESIS Database Contains information on chemicals related to EINECS, ELINCS,
NLP and biocide active substances databases

Carcinogenic Potency
Database (CPDB)

Searchable by chemical
name, CAS number or author

Provides results of 6540 chronic animal cancer tests on 1547
chemicals

IARC monographs Searchable by key word,
chemical name or CAS
number

Reviews of more than 900 chemicals of which 400 have been
identified as known, probable or possible carcinogens

CAESAR Developed as an EU-funded
project

Simple to use

Includes a regression model built on the analysis of 805 chemicals
with rat TD50 values from the CPDB and a classification model

A concordance of 68–74% for carcinogenicity has been reported

Derek Nexus Contains 61 alerts for
carcinogenicity

Note: Derek Nexus does not provide negative predictions, the
absence of a predicted hazard simply means that no relevant alerts
were identified; it does not necessarily mean the absence of hazard

OncoLogic Knowledge-based system

Uses a series of
hierarchically ordered rules
to describe and predict the
carcinogenic potential of
chemicals

Includes over 40 000 rules based on knowledge and generalisations
derived from the examination of more than 10 000 chemicals
belonging to approx. 50 chemical classes

The user needs chemistry expertise

Enhanced NNCI database
browser

Sponsored by the US
National Cancer Institute

Contains data from more
than 500 two-year cancer
bioassays in two species

Also contains results relating to approx. 300 studies from shorter
duration tests
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At present, (Q)SAR models cannot adequately cover
this endpoint, are not well validated for this use, and
no firm recommendations can be made regarding their
use in this area. In addition, there is a paucity of high-
quality data on this endpoint suitable for model
development. (Q)SAR can be used as part of a WoE
approach alongside other data and they can be used 
as supporting evidence when assessing a substance 
by read-across or grouping, but a positive or negative
(Q)SAR result is not sufficient as a stand-alone piece
of evidence (ECHA, 2008). 

In silico models for reprotoxicity endpoints and
nuclear receptor binding have mainly been used for
setting priorities for testing, rather than to fill data
gaps for hazard and risk assessment.

Some of the databases and software tools that have
been designed to predict reproductive toxicity are
shown in Table 2.12 and Table 2.13 (Worth et al.,
2011). 

Worth et al. (2011) found that the best combination of
models based on the statistics was TOPKAT combined
with PASS (for teratogenicity); this combination had a
specificity of 32%, negative predictivity of 48% and a
false negative rate of 14%. This was followed by
combining Derek Nexus and PASS (for
embryotoxicity), with a specificity of 56%, negative
predictivity of 46% and a false negative rate of 27%.
Combining models increased the negative
predictivities, but these are still less than 50% and 
so would not be adequate for regulatory use.

A caveat that should be considered for all endpoints is
that different regulatory bodies apply different criteria
when evaluating raw data. Any conclusions should
therefore be accompanied by a full description of the
effects of the substance. It is also important to check
the criteria used to distinguish between positive and
negative outcomes, and it should be noted that
(Q)SAR are often better suited for the identification of
positives, with positive predictivities between 61–96%
(Worth et al., 2011).
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* April 2013
Sources of these databases are given in Appendix 3

Table  2.12  Databases  containing  information  on  reproductive  toxicity

Database Overview Details Other considerations

ToxRefDB Toxicity test results for
pesticides

387 chemicals for
developmental toxicity &
316 chemicals for
multigeneration
reproductive toxicity

Potentially useful reference database for the
development of new models and application 
of grouping and read-across

Worth et al., 2011 considered
ToxRefDB as a suitable public
domain database to support
grouping and read-across for
developmental toxicity

TOXNET
(Toxicology Data
Network) & DART
(Developmental &
reproductive
toxicology database)

Bibliographic database
containing over 200 000
references to literature
published since 1965
Developmental &
reproductive toxicology

Users can search by subject term, title word,
chemical name, chemical abstracts service
registry number & author

ICSAS Reprotox
Database

Reproductive &
developmental toxicology
database

Contains data records
from animal studies from
publicly available sources

Data from studies on reproductive toxicity 
in male & female animals, teratology, organ
toxicity, non-specific effects to the fetus,
behavioural toxicity in new-born pups

Publicly available sources include: Shepard’s
Catalogue of Teratogenic Agents, TERIS,
REPROTOX, RTECS, studies from EPA
toxdata database & studies on drug labelling

Contains data for 2173 chemicals, mostly
pharmaceuticals

NTPBSI Database
(National Toxicology
Program Bioassay
Online Database)

Developmental toxicity
dataset with data for 70
substances

Mixed dataset with different toxicological
evaluations

ILSI developmental
toxicity database

Currently under
development*
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Table  2.13  Software  tools  for  predicting  reproductive  toxicity

Database Overview Details Other considerations

CAESAR 2.0 Two classification
models for
developmental toxicity
for 292 substances

Based on dataset from Arena et al. (2004) Worth et al., 2011 identified
CAESAR as potentially useful;
they noted that CAESAR is
suitable for use by non-
specialists

TOPKAT Classification model for
developmental toxicity 
of pesticides & industrial
chemicals

Worth et al., 2011 identified
TOPKAT as potentially useful

Derek Nexus 2.0 Contains alerts for
developmental toxicity
(3), teratogenicity (5),
testicular toxicity (1) 
and oestrogenicity (4)

Some studies indicate that this might be useful
for identification of developmental toxicants
but not on its own (high positive predictivity
81–96%)

Could be useful in a stepwise strategy in
combination with grouping and read-across

Derek Nexus is facilitated by
strong customer support from
the developer

PALLAS
HazardExpert
v3.6.2.1

Structure-rule based
prediction of organic
compounds

Some studies indicate that this might be useful
for identification of developmental toxicants
but not on its own (high positive predictivity
81–96%)

Could be useful in a stepwise strategy in
combination with grouping and read-across

Worth et al., 2011 identified
HazardExpert as potentially
useful

Leadscope Model
Applier Version
1.3.3

Classification models for
developmental toxicity in
rodent fetus

Can model dysmorphogenesis (structural &
visceral birth defects), developmental toxicity
(fetal growth retardation & weight decrease)
and fetal survival (fetal death, post
implantation loss and preimplantation loss)

The model for reproductive toxicity includes
rodent male reproductive, rodent male sperm,
female reproductive

OSIRIS Property
Explorer

Classification models
giving probability of
adverse effects

Demo available for free
online and to download 

Commercial version has
added functionality &
predicted endpoints

Has two models: PASS
embryotoxicity and PASS
teratogenicity

Embryotoxicity model predicts probability that
a substance crosses placental membrane &
causes a toxic effect, (e.g. fetal bradycardia,
low birth rate) or death of an embryo

Teratogenicity model predicts probability that
a substance crosses placental membrane and
causes abnormal development of a body
system in the embryo

Worth et al. (2011) found the PASS models 
to have the best performance of those tested 
in their study, with specificity of 59–62%,
negative predictivity of 44–45% and false
negative rate of 29–31% 

Some studies indicate that this might be useful
for identification of developmental toxicants,
but not on its own (high positive predictivity
81–96%) 

Could be useful in a stepwise strategy in
combination with grouping and read-across

Worth et al., 2011 identified
both PASS models as being
potentially useful

OSIRIS Property
Explorer

Classification model
based on RTECS
database of >3500
substances

Predicts effects such as mutagenicity,
tumourigenicity, irritating effects &
reproductive effects
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The future development of (Q)SAR models and
databases will also depend on the development of 
a standardised vocabulary for describing the plethora
of reprotoxic effects at different levels of biological
organisation. The International Life Science Institute
(ILSI) and Leadscope have already started such an
initiative11. In relation to databases, an important
achievement has been the construction, from publicly
available information sources, of the US FDA ICSAS
Reprotox Database suitable for QSAR modelling 
(JRC Report, 2011).

In contrast to reprotoxicity, there is an extensive and
growing range of software and literature models for
predicting endocrine-related activities, and especially
binding to the oestrogen and androgen receptors 
(ER and AR). In many cases, these models are at 
the research stage and require specialised expertise 
to recreate them in molecular modelling software.
However, there are a number of potentially useful
models, including simple decision-tree approaches 
as well as commercial models (JRC Report, 2011).

Tools  and  databases  for  prediction  of
neurotoxicity  

Table 2.14 below shows software tools that are
relevant for neurotoxicity prediction.

It was found that combining two models together
(from Derek Nexus, PASS or HazardExpert) increases
the negative predictivity to 48% and the false negative
rate is 84–94%. Since the negative predictivity is less
than 50% no individual model or two-model
combination is adequate to predict the absence of
neurotoxic potential. High positive predictivities 
mean that some tools (such as Derek Nexus and
HazardExpert) might be useful for the identification 
of neurotoxicants as part of a stepwise strategy in
combination with grouping or read-across
(Worth et al., 2011).

Worth et al. (2011) found that there was generally 
a lack of freely available software tools for
neurotoxicity prediction. This will slow development
of new (Q)SAR and limit read-across and grouping
applications for this endpoint.
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Database Overview Details Other considerations

MultiCASE
(MC4PC)

Classification models for
developmental toxicity
associated with a variety
of datasets, mainly drugs

The marketed software includes modules for
predicting mammal sperm toxicity,
developmental toxicity, developmental fetal
growth retardation, developmental fetal weight
decrease and fetal survival or death

Endocrine
Disruptor
Knowledge Base
(EDKB) database

Quantitative models 
to predict the binding
affinity of compounds 
to the oestrogen and
androgen nuclear
receptor proteins

Sources of theses software tools are given in Appendix 3

11 more information available from: http://www.epa.gov/ncct/
dsstox/CoordinatingPublicEfforts.html#ToxML
[accessed March 2013]

Table  2.14  Software  tools  for  predicting  neurotoxicity  

Database Overview Details Other considerations

Derek Nexus 2.0 Contains hundreds of
alerts covering a wide
range of toxicological
endpoints

Based on rules from
mechanisms of action 
of a chemical class or
empirical relationships
from published data &
experts

Has eight alerts for neurotoxicity: gamma
diketone or precursor, acrylamide or
glycidamide, nitroimidazole, carbon disulfide
or precursor, pyrethroid, 1-methyl-1,2,3,6
tetrahydropyridine, lead or lead compounds &
organophosphorus ester

Derek Nexus performed the best for
neurotoxicity predictions, with 80%
specificity, 43% negative predictivity and 
74% false negative rate

Requires expertise for use, but has strong
customer and developer support

Alerts not designed to identify
absence of effects, so can only
identify positives

Applicability domains of expert
systems not well developed.
Worth et al. (2011) identified
Derek Nexus as ‘potentially
suitable’ for neurotoxicity
prediction (Worth, 2011)
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22..22  RReeaadd-aaccrroossss  aanndd  
tthhee  aannaalloogguuee  aapppprrooaacchh
2.2.1  The  concept  of  grouping  of  chemicals

The term ‘grouping’ or ‘chemical grouping’ describes
the general approach to assessing more than one
chemical at the same time. It can include the
formation of a chemical category or the identification
of a chemical analogue for which read-across may be
applied. Grouping can be employed for various
purposes, for example in the development of a
(Q)SAR model, or to predict certain properties of the
grouped chemicals without the necessity to test them
individually for all endpoints.

The term chemical grouping can be refined by the use
of the more specific terms ‘category approach’ and

‘analogue approach’, which are two techniques used
for grouping chemicals together. 

A chemical category is a group of chemicals whose
physicochemical and human health and/or
environmental toxicological properties and/or
environmental fate properties are likely to be similar
or follow a regular pattern as a result of structural
similarity. The similarities may be based on the
following. 

• A common functional group (e.g. aldehyde,
epoxide, ester, specific metal ion)

• Common precursors or breakdown products via
physical or biological processes, which result in
structurally similar chemicals (e.g. the metabolic
pathway approach of examining related chemicals
such as acid, ester or salt)
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PALLAS
HazardExpert
v3.6.2.1

Predicts toxicity of
organic compounds based
on toxic fragments

Structure-rule-based
system

Covers several endpoints including
carcinogenicity, mutagenicity, teratogenicity,
membrane irritation, immunotoxicity and
neurotoxicity

Requires specific expertise for use

Worth et al. (2011) identified
HazardExpert as ‘potentially
suitable’ for neurotoxicity
prediction (Worth, 2011)

Leadscope Model
Applier Version
1.3.3, neurotoxicity
suite

Includes models from a
predefined library of 
27 000 hierarchically
organised fragments that
are typically found in
small drug molecules &
eight calculated
molecular descriptors

Suite comprises three rodent new-born
behaviour models 

Not directly relevant for this use as it is based
on results from developmental neurotoxicity
tests

PASS v10.1 Predicts mutagenicity,
carcinogenicity,
teratogenicity,
embryotoxicity, a range
of mechanisms of action
and pharmacological
effects

Free version is more
restricted than
commercial version in
terms of functionality,
endpoints & datasets

Version 10.1 of PASS includes a neurotoxicity
model that predicts the probability of
neurotoxicity

The neurotoxicity module and
receptor-mediated activity
modules not directly relevant
for this use (Worth, 2011)

ADMET Predictor
5.0

Predicts probability 
of blood–brain barrier
penetration as low 
or high

Not directly relevant, but could provide
supporting information

Does not provide an apical
endpoint

Accelrys ADME
add-in

Predicts blood–brain
barrier penetration from
oral exposure in a
quantitative linear
regression model

Not directly relevant, but might provide
supporting information

Does not predict an apical
endpoint

Sources of these software tools are given in Appendix 3

Database Overview Details Other considerations
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• An incremental and constant change across 
the category (e.g. a chain length category), often
observed in physicochemical properties such 
as boiling point range

• Common constituents or chemical class, similar
carbon range numbers

Within a category, a property can be estimated through
read-across, trend analysis or (Q)SAR from those
members of the category that have data to those that
do not. Read-across is therefore a data gap-filling
technique used to predict endpoint information for one
chemical by using data from the same endpoint from
another chemical which is considered to be similar in
some way. 

Whilst read-across can be used within the context of a
category approach, it is also a useful tool for data gap-
filling in cases where comparisons are based on a very
limited number of chemicals. The reading-across of
endpoint information for one chemical to predict the
same endpoint for another chemical (i.e. a one-to-one
read-across) is referred to as the analogue approach
(ECHA, 2008). 

2.2.2  Read-aacross

Introduction  to  read-aacross

The read-across technique is widely used and is often
accepted as a valid approach for regulatory purposes.
As explained above, read-across involves using
endpoint information for one chemical to predict the
same endpoint for another chemical considered to be
similar in some important way that relates to the
endpoint, usually on the basis of structural similarity,
but possibly also on the mode of action, toxicokinetics
or metabolism. Read-across can be used in the context
of both the analogue approach and the category
approach (OECD, 2007b). Read-across can be applied
to characterise a range of properties, such as
physicochemical properties, environmental fate,
human health effects and ecotoxicity in a qualitative
or quantitative manner (OECD, 2007b; ECHA, 2008).

Read-across can be performed in the following ways.

• One-to-one: a single analogue is used to estimate
the endpoints for a single chemical.

• Many-to-one: two or more analogues are used to
estimate the endpoints for a single chemical.

• One-to-many: a single analogue is used to estimate
the endpoints for two or more chemicals.

• Many-to-many: two or more analogues are used to
estimate the endpoints for two or more chemicals.

The guidance described here for read-across applies 
to both the analogue approach and the category
approach. However, it should be noted that the

category approach is generally considered to be more
robust than the analogue approach because a greater
amount of measured data is usually available in a
category. As a consequence, the success of read-across
depends strongly on the quality of the measured data
and the appropriate selection of the characteristics and
measures of similarity. In the read-across approach,
the target chemical is the chemical for which an
endpoint is being estimated and the source chemical 
is the chemical that is being used to make an estimate
(OECD, 2007b; ECHA, 2008).

Read-across can be either qualitative or quantitative,
as follows.

• Qualitative read-across: The presence or absence
of a particular property or activity is inferred from
the source chemical(s) to the target chemical(s).
Qualitative read-across gives a yes/no answer, for
example the substance is a skin sensitiser or not
(OECD, 2007b; ECHA, 2008).

• Quantitative read-across: Properties from the
source chemical(s) with known values are used 
to estimate the value of that property for the target
chemical(s). Quantitative read-across yields a
quantitative value for an endpoint, for example 
the potency of a carcinogen, an LD50 value or 
a LOAEC for hepatotoxicity (OECD, 2007b; 
ECHA, 2008).

Read-across is usually performed on the basis of
similar chemical structures, properties and/or
activities. These could be:

• a common functional group (e.g. aldehyde,
epoxide, ester or metal ion);

• a common precursor and/or breakdown product
resulting from physical or biological processes,
such as a metabolic pathway;

• a common mechanism of action and similarities in
biochemical reactivity.

Similarity plays a crucial role in grouping approaches.
Although there is an intuitive understanding about the
similarity of chemicals, attempts to formalise this
understanding with universal practical validity are not,
at present, advanced. The similarity of chemicals
depends on a variety of factors. It may be accounted
for by molecular topology (atom connectivity),
chemistry (atom and bond types), the presence of
functional or specifically acting groups,
physicochemical properties, mechanism of
interactions, endpoints, etc. (Cronin & Madden, 2010).

The absence of a unique measure of chemical
similarity indicates that similarity should be
considered as a context-dependent parameter. 
From a practical point of view, it is more useful if the
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grouping of similar chemicals is performed in a
stepwise manner, applying different measures of
similarity consecutively – topology, functionalities,
properties, mechanism, etc. A consecutive approach 
to grouping of chemicals allows users to:

• start by grouping chemicals with less conservative
conditions, thus allowing an initial collection of a
large number of potential analogues;

• prune the initial set of analogues consecutively by
applying different measures of similarity, starting
with more general and ending up with more
specific molecular features; and

• select a small number of very similar analogues in
the context of the phenomenon studied (Cronin &
Madden, 2010).

Traditionally, the assessment of chemical similarity
has been performed on a case-by-case basis.
Computational tools implementing various ranges 
of similarity metrics can facilitate identification of
suitable analogues in a more efficient and consistent
manner. The major challenge for computational tools
that support grouping approaches centres around
formalisation of expert knowledge, improved
management and openness of toxicological data.

Read-across can be used to predict both the presence
and absence of a property or effect. Read-across from
a negative result is as valid as a positive result,
provided the test design is adequate. It is particularly
important to justify read-across of negative findings
and this approach is more robust when a quantitative
relationship can be established. 

When deciding whether qualitative or quantitative
read-across is necessary, it is first important to identify
what type of data is required and the reason the
endpoint is being estimated. If a specific value is
required, then quantitative read-across will be
necessary. If, however, the endpoint needs to be
checked against a threshold or a classification, then
qualitative read-across may be sufficient. 

Qualitative read-across

The main application of qualitative read-across is in
identifying and categorising hazards. In qualitative
read-across, the presence or absence of a property is
inferred from the established properties of one or more
analogues. The application of qualitative read-across
usually results in the allocation of the target chemical
to the same hazard category as the source chemical.
The arguments to support qualitative read-across are
usually based on assessment of several factors and
expert judgement (OECD, 2007b; ECHA, 2008).

For example, a common substructure that is normally
responsible for a common property or effect could be
affected by other parts of the chemical structure; this
could be affected in either a qualitative or a
quantitative manner. In addition to the problem of
interactions between substructures, some differences
in the chemical structure and/or in its physicochemical
properties could completely alter the common effect
altogether (OECD, 2007b; ECHA, 2008).

It should be noted that quantitative changes in potency
between the source and the target chemical may
warrant a different classification or banding; hence 
a quantitative change can also alter the qualitative
assessment. Also, if the effect being measured is a
direct effect in the source chemical(s) but a secondary,
indirect effect in the target chemical(s), or vice versa,
this can lead to a different classification of chemicals
within the same category (OECD, 2007b; ECHA,
2008).

Quantitative read-across

In quantitative read-across, the known value of a
property (e.g. the potency) for the source chemical is
also used to estimate the unknown value of the same
property for the target chemical.

There are four methods of applying quantitative read-
across to estimate missing data points.

1 By using the same endpoint value as the source
chemical

2 By using a (Q)SAR and the available experimental
results from two or more source chemicals to
estimate the endpoint for the target chemical

3 By processing the endpoint values from two or
more source chemicals (e.g. averaging the
endpoints or taking the most representative value)

4 By using the most conservative value of the
analogues

If there are concerns that the target and source
chemicals are different enough in terms of potency 
to affect the conclusions on hazard identification and
characterisation, then it may be necessary to perform
further testing to demonstrate these differences
(OECD, 2007b; ECHA, 2008).

General  considerations  when  performing  
read-aacross

There are several factors to consider when performing
read-across.

• Whether the data for the source chemical are
relevant and reliable. Particular consideration
should be given to data that have not been
produced to current OECD test methods.
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• Whether the source and/or target chemical(s) are
multifunctional and whether these functional
groups can affect the reliability of the read-across.

• Whether impurities in the chemicals may influence
the overall toxicity, and the effect these impurities
may have on the robustness of the estimate. To
consider this factor, the purity and impurity
profiles of the target and source chemicals should
be assessed. If all category members have the same
sort of impurities then they may not have an
influence on the read-across. However if one
category member has a biologically active
impurity, then read-across might not be
appropriate.

• The physicochemical properties of the target and
source chemicals should be compared, particularly
their physical form, molecular weight, water
solubility, particle size, particle structure, partition
coefficient and vapour pressure. It should be noted
that data on contaminants’ physicochemical
properties might not always be available.

• The toxicokinetics and any possible different
metabolic pathways should be considered for 
the target and source chemicals.

Information from valid (Q)SAR can be used to inform
on the need, extent and type of any additional testing
(OECD, 2007b; ECHA, 2008).

Supporting  information
When performing read-across, it is important to
provide supporting information to strengthen the
rationale for its use. This includes demonstrating 
that other properties relevant to the endpoint are 
also similar between the source and target chemicals.
These additional properties could be identified through
expert knowledge or be based on those molecular
descriptors that have been found to be useful
predictors of the endpoint in (Q)SAR models 
(OECD, 2007b; ECHA, 2008).

Useful supporting information could include the
following.

• Whether the substance has any functional groups
that could influence the behaviour of the chemical

• The similarities between the chemicals in terms of
their physicochemical properties (e.g. molecular
weight, log Kow or water solubility)

• Similarities between the chemicals in terms of
other toxicological and/or ecotoxicological data

• Similarities in the toxicokinetics of the substances,
including metabolic pathways

• Information from valid (Q)SAR

Supporting information for human health endpoints 

The type and amount of supporting information
required for the read-across of human health endpoints
will depend on the endpoint itself; current practice
relies heavily on expert judgement. Physicochemical
properties are generally useful, including those
properties that determine bioavailability (e.g.
molecular weight and partition coefficients (e.g. 
log Kow), water solubility, pH, vapour pressure and
viscosity). Particle size and structure are also relevant
(OECD, 2007b; ECHA, 2008).

Reactivity with proteins or DNA can also provide
useful supporting information. In vitro data can also
be used as supporting information for some endpoints.

Stepwise  approach  for  applying  read-aacross
within  the  analogue  approach

The stepwise approach, described below, has been
recommended by both the OECD and by the EU in
relation to industrial chemicals under REACH.
However, it should be noted that it is not the only
approach (OECD, 2007b; ECHA, 2008).

1 Identification of potential analogues

There are several ways to identify analogues as source
chemicals to use for read-across. Similar chemicals
may be produced for comparable uses by the same
company or industry sector, and are often used as
potential analogues. No formal selection techniques
are used in this scenario (OECD, 2007b; ECHA,
2008). A more formal search strategy may find
additional analogues to compare with the target
chemical, increasing the robustness of the read-across.
As the number of chemicals included in a read-across
increases, this approach gets closer to that used for
categories. It should therefore be considered whether
the chemical is best evaluated by the analogue or
category approach. Factors that would influence this
decision are whether the chemical is a member of a
category that has already been evaluated, and the
number of analogues identified. If a large number of
analogues is identified, the category approach (Section
2.3) is recommended (OECD, 2007b; ECHA, 2008).

To select analogues for read-across, computational
methods are available. These use a combination of
expert knowledge and automated search tools for
molecular similarity indices and electronic
substructures (Table 2.15). Molecular similarity has
predominantly been used by the pharmaceutical
industry for virtual screening, estimation of
absorption, distribution, metabolism, excretion,
toxicity and prediction of physicochemical properties
(OECD, 2007b; ECHA, 2008). 

The fundamental basis for any read-across decision
must be that the chemical structures are sufficiently
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close that it can be reasonably expected that their
effects would be similar. The more different the
chemical structures, the lower the confidence in the
prediction or read-across. Where biologically active
functional groups are present, they should be in both
chemicals, in the same orientation in a manner that
would give similar biological activity. The purity of
the two chemicals and subsequent impurities should
be examined to ensure that the overall toxicity is the
same (OECD, 2007b; ECHA, 2008).

2 Data gathering for the analogues

For the source analogues chosen, published and
unpublished data should be gathered on standard
physicochemical properties, environmental fate,
ecotoxicological effects and toxicological effects.

If many analogues have been identified, some
computational tools are available to help reduce 
the dataset to the closest analogues (OECD, 2007b;
ECHA, 2008).

There are many web-based databases containing
information or data on environmental and human
health effects of numerous chemicals. One of the most
extensive of these databases has been made available

by the OECD in collaboration with ECHA (European
Chemicals Agency) and other, global, organisations12.

3 Evaluation of available data for adequacy

If the data have been obtained from a peer-reviewed
source they can normally be used without further
evaluation. However, if the data are not peer reviewed,
they should be evaluated for adequacy. 

4 Construct a matrix of data availability

A matrix of data availability should be constructed for
the target endpoint and other relevant endpoints. It
should include the target chemical and the
analogue(s). If multiple analogues have been
identified, they should be arranged in an order that
reflects a trend or progression within the group. The
cells of the matrix should indicate whether data are
available or not (OECD, 2007b; ECHA, 2008).

5 Assess the adequacy of the analogue approach and
fill the data gap

The decision on whether data from an analogue are
suitable for read-across relies largely on expert
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Sources of these internet-based tools are given in Appendix 3

Table  2.15  Examples  of  Internet-bbased  tools  for  analogue  searching

Internet tool Comments Search options

AIM (Analog Identification Methodology) Links to publicly available, experimental
toxicity data for the target chemical and
structural analogues
Contains 31 031 records

Searchable by CAS, SMILES and
(sub)structure

Ambit

Developed by IdeaConsult Ltd

Databases and functional tools, includes a
tool for defining applicability domain of
(Q)SAR models
Contains 463 426 records

Searchable by chemical name, CAS,
SMILES and (sub)structure

CAS SciFinder Commercially available and internet
accessible portal to extensive collection of
chemical and biochemical information
from scientific literature and patents

Searchable by chemical name,
(sub)structure, biological sequence and
reaction, research topic, author and
company

ChemFinder Contains both publicly available and
subscription scientific databases

There is a diverse range of searchable
parameters

Searchable by chemical name, synonyms,
CAS, formula, chemical structure (exact
match, substructure, similarity search),
toxicological and physicochemical
properties

Danish (Q)SAR Database

Developed by the DK EPA

Contains 166 000 records Searchable by chemical name, CAS,
endpoint and (sub)structure

Hazardous Substances Database
(HSDB)

More than 4800 peer-reviewed records Searchable by chemical name, fragment
name, CAS and subject terms

Leadscope Commercially available databases and
(Q)SAR functionalities

Searchable by chemical name,
(sub)structure, toxic effect, study type and
experimental conditions

ChemID Plus Contains over 379 000 records Searchable by chemical name and CAS
number

12 http://www.echemportal.org/echemportal/
index?pageID=0&request_locale=en [accessed March 2013]
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judgement. Where possible, the read-across should 
be evaluated in terms of the mode of action and
available data for the source and target chemicals.
(Q)SAR can also be helpful for assessing the
applicability of the read-across, predicting missing
data or comparing experimental data with predictions. 

If read-across is deemed to be suitable, the target
chemical should be evaluated using data from the
source chemical. If, however, read-across is not
suitable, the following options are available.

• Identify alternative analogues

• Use the category approach

• Obtain the information directly by testing
(OECD, 2007b; ECHA, 2008)

6 Document the analogue approach

If read-across is appropriate, it should be documented
in order to justify its use instead of testing. A suitable
format is shown in Section 2.4. The justification for
the read-across should include an explanation of the
rationale, the assessment of the read-across and all
supporting information, as shown in Figure 2.1
(OECD, 2007b; ECHA, 2008). 

Reporting  format  for  the  analogue  approach
The following reporting format for analogue read-
across has been recommended by the OECD and at
EU level in relation to industrial chemicals under
REACH (OECD, 2007b; ECHA, 2008).

• Hypothesis for the analogue approach: Describe
the molecular structure that a source chemical
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START

Step 1: Identify
potential

analogue(s)

Step 2: Gather 
data  for the
analogue(s)

Step 3: Evaluate 
available data 
for adequacy

Step 4: Construct 
a matrix of data

availability

Obtain data
point by testing

Not
adequate Step 5: Assess the

adequacy of
read-across and fill

data gap

Step 6: Document
the read-across

STOP

Adequate

Search for
additional
analogues

Not
adequate

Figure  2.1  Stepwise  procedure  to  the  analogue  approach  (ECHA,  2008)
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must have in order to be suitable for read-across,
identifying all functional groups. Provide a
hypothesis on why the read-across can be
performed; if there is a mechanistic reasoning,
describe the foreseen mode of action for the source
and target chemicals. Where relevant, describe the
influence that the route of administration (oral,
dermal or inhalation) would have. List the
endpoints that are being predicted.

• Source chemical(s): Describe the source
chemical(s) as fully as possible, providing 
CAS number(s), substance name(s) and chemical
structure(s).

• Purity/impurity: Provide purity/impurity profiles
for the target and source chemical(s), including
their likely impact on the relevant endpoints being
predicted.

• Analogue approach justification: Summarise
how read-across is justified. The available
experimental data should demonstrate that the
anticipated toxicity is not affected by functional
groups that are different in the source and target
chemicals.

• Data matrix: Provide a matrix of data for
endpoints versus target and source chemical(s). 
If experimental results are available, key study
results should be included and should support 
the justification for read-across.

• Conclusions: For each endpoint and substance 
a conclusion should be reached. Uncertainties 
in the read-across should be discussed. 

22..33  GGuuiiddaannccee  oonn  ggrroouuppiinngg  
ooff  cchheemmiiccaallss
2.3.1  Chemical  category  approach

Introduction  to  the  category  approach

A chemical category is a group of chemicals that have
structural similarity and, as a result, their
physicochemical, human health, environmental
toxicology and/or environmental fate properties are
likely to be similar or follow a regular pattern. As the
number of possible chemicals being grouped into a
category increases, the potential for developing
hypotheses for specific endpoints and making
generalisations about the trends within the category
will also increase and hence increase the robustness 
of the evaluation (OECD, 2007b; ECHA, 2008).

The principle of the category approach is that the
properties of a series of chemicals with common
structural features will have coherent trends in their
physicochemical properties, toxicological effects or
environmental fate properties. Trends are generally

associated with a common underlying mode of action.
As a result of this, it is possible to extend the use of
measured data on tested chemicals within the category
to similar untested chemicals (within the category)
without the need for further testing. The category
approach can also be used to help decide the nature
and scope of any testing that might need to be carried
out (OECD, 2007b; ECHA, 2008). 

Chemicals within a category are assessed on the basis
of the evaluation of the category as a whole. The
category therefore provides an alternative to testing
individual substances leading to a decrease in the use
of animal testing (OECD, 2007b; ECHA, 2008).

Benefits  of  the  category  approach
There are a number of benefits to using the category
approach.

• Missing data can be extrapolated from others in
the category, reducing the amount of testing
needed.

• The approach is based on a larger body of data
than using a single chemical.

• Chemicals within a category can provide
information about potential effects that might
otherwise have been overlooked.

• It is helpful for the evaluation of chemicals that
pose technical difficulties within standard test
protocols.

• Category testing can be completed quicker than
doing individual tests on several chemicals. 

• Not every chemical needs to be tested for every
endpoint. The overall dataset is used to estimate
the missing data points.

• It allows for better consideration of the biological
plausibility of grouping the chemicals within a
category.

• The approach can be used to help identify and fill
data gaps efficiently. 

• Knowledge of expected biological effects of the
chemicals in the category is helpful for deciding
whether testing is needed and the nature and scope
of any tests to be carried out. If confirmation is
being sought that an individual category member
does not have a particular property, this may be
possible with a simple limit test, whereas when an
individual category member is expected to have an
effect, an in vitro test may be adequate for
confirmation of the predicted effect.

• It allows for an evaluation of the biological basis
for the effects seen in a group of chemicals within
a category. When members of a certain chemical
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category share a common mechanism of action, the
confidence in the category is significantly greater
than that associated with the use of the read-across
approach to fill data gaps.

In a large category (more than 10 members), the
presence or absence of hazards as well as the trend 
of an effect across the category can be identified more
easily; this is a significant advantage over the read-
across technique. For limited comparisons, it is harder
to obtain the same level of confidence, particularly if
the chemicals have multiple functional groups
(OECD, 2007b; ECHA, 2008).

Explanation  of  concepts
Similarities within a chemical category may be based
on the following.

• Common functional group(s) (e.g. aldehyde,
epoxide, ester or specific metal ion)

• Common constituents or chemical classes 
(e.g. similar carbon range numbers) 

• An incremental and constant change across the
category (e.g. chain length) which is often related
to an incremental change in physicochemical
properties

• The likelihood of common precursors and/or
metabolites which results in structurally similar
chemicals 

It is recognised that the formation of a chemical
category is often dependent on which chemicals are
manufactured by the companies sponsoring the
category, or the regulatory context under which the
evaluation is being made (OECD, 2007b; ECHA,
2008). Within a chemical category, data gaps may be
filled by read-across (see Section 2.2), trend analysis
(see below) and/or (Q)SAR. For a particular endpoint,
category members are often related by a trend
(increasing, decreasing or constant). Trend analysis
can be carried out using a model based on the data for
the members of the category. Data gaps can also be
filled by an external (Q)SAR where the category
under examination is a subcategory of the (Q)SAR
model being used (i.e. the category falls within the
applicability domain of the (Q)SAR; OECD, 2007b;
ECHA, 2008).

Chemical categories can be described using a matrix
consisting of the category members and a
corresponding set of property and/or activity data 
(the category endpoints).

The choice of chemicals included in a category is
often influenced by practical considerations. Ideally,
the category should contain all potential chemical

members when it is first developed; however, this
would be very difficult to achieve.

Substances with several functional groups can belong
to more than one category. If a category includes a
high proportion of its potential members, conclusions
drawn from the evaluation are likely to be more robust
and the category more likely to be useful in reducing
the amount of testing. If a substance is subsequently
identified as a member of an existing category, it will
be necessary to evaluate both the data for this
substance in the light of the category evaluation and
the category evaluation in the light of the data for the
additional substance. If the initial category evaluation
is sufficiently robust, the additional data are unlikely
to alter significantly the initial evaluation.

In many cases, additional chemicals are identified
which are at the boundaries of an existing category;
these may need additional testing to confirm whether
they belong to the category. The applicability domain 
of the category can also be used to help assess whether
a substance is a member of an existing category. The
applicability domain would specify the structural
requirements and ranges of physicochemical,
environmental fate, toxicological or ecotoxicological
properties for which reliable estimations can be made
(OECD, 2007b; ECHA, 2008).

A category can be divided into subcategories; this is
helpful when an effect can be present for some but not
all members of the category. 

Subcategories are often endpoint specific and can arise
for a number of reasons.

• Where the effect varies in intensity across the
category such that some members may fall in one
hazard class with other members in a different
hazard class

• Where the effect may have a peak in activity 
or show a breakpoint in a trend

• Where trend analysis may apply to a subcategory
but not the entire category

Subcategories improve the flexibility and practicality
of the category approach, but they do not alter the
scientific basis of the methodology (OECD, 2007b;
ECHA, 2008).

Trend  analysis  and  internal  (Q)SAR  models
For a particular endpoint, members of a category are
often related by a trend across the category (e.g.
increasing, decreasing or constant). The trend could 
be related to molecular mass, carbon chain length or
to some other physicochemical property. Larger
categories could have several different trends for 
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a single endpoint, thereby defining subcategories. A
breakpoint chemical is one that identifies a turning
point in a trend, and sentinel chemicals are those that
are at the opposite extremes of a trend (OECD, 2007b;
ECHA, 2008).

A consistent trend is desirable in a chemical category;
it indicates that the chemicals have a common
mechanism of action and allows data gaps to be filled
by scaling the measured values. Trends in
experimental data are the basis for interpolation and
extrapolation within the category. Interpolation is the
estimation of a value using measured values from
category members on both sides of the unknown data
point. Extrapolation is the estimation of a value that is
at or near the category boundary using measured
values from internal category members. Interpolation
is therefore generally preferred as it is usually a more
reliable method. Extrapolation is necessary when there
are data gaps for the boundary chemicals. It should be
noted that extrapolation within a category is more
robust than using read-across from an analogue
(OECD, 2007b; ECHA, 2008).

When identifying trends in data there are several
factors that should be considered, such as laboratory
and experimental variations, different species or
strains of animal used and different test protocols. 
Any deviations from the trend should be identified 
and explained where possible (OECD, 2007b; 
ECHA, 2008).

A quantitative trend between members will make 
the category approach more robust. An endpoint for
which there is no toxic effect should be considered 
in terms of whether the tests failed to demonstrate the
effect or whether it can be explained in terms of the
mechanism of action of the substance (OECD, 2007b;
ECHA, 2008).

A break in a trend within a category does not
necessarily mean that the chemicals with different
trends exhibit different toxicity pathways. Also, breaks
should be distinguished from differences in hazard
classification, which depend on an administrative cut-
off for that property (OECD, 2007b; ECHA, 2008).

Data for a particular endpoint can be used to construct
a (Q)SAR that describes the properties of the members
of that category. Trends could also be used to
construct a QAAR (quantitative activity–activity
relationship; see below), based on the assumption that
knowledge about the mechanism of action for one
endpoint is applicable to a similar endpoint (OECD,
2007b; ECHA, 2008).

A chemical category can therefore be seen as a set of
internal (Q)SAR (and possibly internal QAAR) for the
different endpoints, with the advantage that all the
underlying data are available to the assessor. Such
models provide quantitative descriptions of the trends
within a category and are derived directly from the
experimental data for the category members. These
models are based on only a relatively small dataset
and usually work best for a homologous series of
chemicals where the extrapolation is based on a
simple parameter that can be linked to the
physicochemical properties of the chemicals. If the
category members are not a simple homologous series,
it is essential that a parameter is established that can
predict the trend across the category from which the
missing values can be extrapolated (OECD, 2007b;
ECHA, 2008).

Mechanistic  basis  of  categories
A chemical category will often have a presumed
common mechanism of action and the members 
will demonstrate this by the presence, absence or
modulation of an effect (OECD, 2007b; ECHA, 2008).

In principle, a category is not endpoint specific, since
structural changes across a category would be
expected to change the whole spectrum of properties
of the category members in a coherent and consistent
manner. However, in practice it may not always be
possible to identify the trends and changes for all the
properties of interest. For some categories, the upper
or lower ends of the series may show marked changes
in their effects. A breakpoint within a category can
indicate a change in the mode of action of the
chemicals (OECD, 2007b; ECHA, 2008).

A common mechanism of action is an important factor
when deciding which chemicals are relevant members
of a category (OECD, 2007b; ECHA, 2008).

Robustness  of  a  chemical  category
There are several factors that contribute to the
robustness of a category (OECD, 2007b; ECHA, 2008). 

• The number of members in the category and 
the available data

• The quality of the experimental data for each 
of the endpoints

• The mechanistic basis that is thought to underpin
the category

• The quality of the data estimated by external
computational approaches.

The current guidance does not provide criteria to
validate chemical categories; however, it does provide 
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guidance about how to optimise the robustness of the
category and how to document the justification for it
(OECD, 2007b; ECHA, 2008).

Another important factor contributing to the
robustness of a category is the definition of the
applicability domain of the category. This is made 
up of the structural requirements and ranges of
physicochemical, environmental fate, toxicological 
or ecotoxicological properties within which reliable
estimations can be made for the category members.

Interdependence  between  categories  and  (Q)SAR
The concepts of chemical categories and (Q)SAR are
strongly connected; in fact, the broad description of
the concept for categories and the historical
description of (Q)SAR are the same: Chemical
categories are formed and the measured data within
them is used to estimate missing values for the
untested members (OECD, 2007b; ECHA, 2008).
(Q)SAR often take the form of regression equations
which are used to make predictions of activities or
effects from a numerical measure of the chemical
structure (OECD, 2007b; ECHA, 2008).

Similarly, a QAAR is a mathematical relationship
between two biological endpoints or activities. 
QAAR are based on the assumption that knowledge
about the mode of action for an endpoint is applicable 
to a similar endpoint because the main underlying
processes of these related endpoints or activities 
are the same (e.g. partitioning, reactivity, enzyme
inhibition). QAAR provide a means of performing
trend analysis and filling data gaps (OECD, 2007b;
ECHA, 2008).

The common scientific foundation between forming
categories and QSAR/QAAR is that chemicals, once
grouped together on the basis of common structural
attributes, become chemical classes that exhibit
consistent trends in their chemical properties and
biological hazards. In addition, these trends in
chemical activity are often related directly to trends 
in chemical structure expressed by (Q)SAR. 

2.3.2  Stepwise  procedure  to  develop  categories

Chemical categories allow for hazard information to
be obtained or estimated for all the individual
chemicals in the category without the need to test each
individual member. If there are sufficient experimental
data to support the category evaluation, then each
chemical within the category can be evaluated by
read-across, (Q)SAR or trend analysis. If there are not
sufficient experimental data to support the category
then the following may be necessary (OECD, 2007b;
ECHA, 2008).

• Perform limited and targeted testing

• Revise the category hypothesis and therefore the
applicability domain in terms of its members and
endpoints, or

• Abandon the category hypothesis; this should be 
a last resort 

When using results from a category, it should be
demonstrated that the category is robust by obtaining
and documenting information about it. In order that
this is done in a systematic and transparent way, it is
recommended that the stepwise approach described in
this section and shown in Figure 2.2 is used. Since
there can be different starting points for the category
formation (for example, from a single chemical, 
a small group of chemicals or a large group of
chemicals) this method is flexible (OECD, 2007b;
ECHA, 2008). 

Step 0: Check whether the chemical is a member 
of an existing category

The first step is to check whether the query chemical
is already a member of a category that has been
evaluated. The following websites13 have information
on existing categories.

Some examples of industry sectors that apply
grouping principles to evaluate health and
environmental properties are petroleum substances,
dyes and pigments, chlorinated paraffins, surfactants,
hydrocarbon solvents, acrylate resins, petroleum
additives, bitumen, flavours and fragrances (OECD,
2007b; ECHA, 2008).

Once a chemical is a member of a category that has
been evaluated, the evaluation and results of the whole
category can be used, taking account of the particular
chemical’s position within the category. New data can
be used to verify the validity of the existing category
and could also lead to a revision of the category,
where necessary. In some cases, a relevant category
may exist but the query chemical has not been
specifically included in the category. In this case, it
may be appropriate to extend the membership of the
category to include the chemical of interest (OECD,
2007b; ECHA, 2008).
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13 Web addresses accessed March 2013

US EPA:
http://www.epa.gov/opptintr/newchems/pubs/chemcat.htm

OECD: 
http://cs3-hq.oecd.org/scripts/hpv

United Nations:
http://www.chem.unep.ch/irptc/sids/OECDSIDS/sidspub.html
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Figure  2.2  Stepwise  procedure  to  category  development  
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Step 1: Develop category definition and hypotheses 
and identify category members

A category definition should include a list of all the
substances and endpoints covered. It could refer to
chemical classes with a common functional group 
or chemicals with an incremental and constant change
across the category. The chemical structure is usually
the starting point, but the definition could also refer 
to a common mechanism of action or property. Some
categories are defined by a metabolic pathway, where
different members of the category are produced with
each metabolic step. The category definition should
include the molecular structure that is required to be in
the category, with defined criteria such as carbon chain
length and functionality (OECD, 2007b; ECHA, 2008).

Categories can be proposed for a specific endpoint or
a selection of endpoints. All of the endpoints that can
be expected to be relevant for the category should be
included, because the wider the range of endpoints
covered the more robust the results obtained from 
the category (OECD, 2007b; ECHA, 2008).

The hypothesis for the category should address 
the following (OECD, 2007b; ECHA, 2008).

• The similarities and trends in properties and/or
activities that form the association between the
members of the category

• The specific instances of read-across, trend
analysis and computational methods that have 
been used

• The inclusion/exclusion rules that identify the
ranges of values for which reliable estimations 
can be made for the given endpoint (also called
applicability domain); these rules provide a way 
to extend the category to include other members 
at a future date 

There are many approaches to selecting category
members, from manual approaches to automated
computer-based analogue searching methods.

Some categories have been formed using the SMILES
notations. This approach is fast, simple and it can
ensure that all possible members of a category are
included. For new category proposals, computational
methods can help develop the category hypothesis and
define the category endpoints and members. The
computational methods used depend on the starting
point. If starting from a single chemical or a small
group of chemicals, tools such as Derek Nexus,
Leadscope or AIM would help build up the category,
whereas tools such as TSAR and Cerius2 are helpful
to identify substituents of a substructure (OECD,
2007b; ECHA, 2008).

Some examples of internet-based tools that can be
used to find analogues are described in Table 2.15,
Section 2.2.

It is important that all potential category members 
are described fully, including all the relevant CAS
numbers (OECD, 2007b; ECHA, 2008).

The purity and impurity profiles of all potential
category members should be collected as differences
here could influence the toxicity. Category members
should either have similar purity or, if different, the
effects of the differences in purity should be known
(OECD, 2007b; ECHA, 2008).

Step 2: Gather data for each category member

For each member of the category, both published and
unpublished data should be gathered on the following.

• Physicochemical properties

• Environmental fate parameters

• Toxicity (human health)

• Ecotoxicity

There are many web-based databases containing
information or data on environmental and human
health effects of numerous chemicals. One of the most
extensive of these databases has been made available
by the OECD in collaboration with ECHA and other,
global, organisations14.

Step 3: Evaluate available data for adequacy

The available data should be evaluated for adequacy.
The following factors should be taken into account
when evaluating results for an individual substance
within a category.

Different types of data can be available for the same
endpoint. The scope of the estimated results cannot
exceed the scope of the underlying data for the other
members of the category. In addition, if the scope of
the underlying data varies (e.g. a mix of results from
screening tests and higher tier tests) for a particular
endpoint, then it would be necessary to clarify the
scope of the estimated results for the category
members for which no experimental results are
available. It may be appropriate to apply a WoE
approach to all the data (OECD, 2007b; ECHA, 2008).

An effect that is defined by a cut-off point could yield
different conclusions for individual substances within
the same category. In this scenario the compounds
should be carefully evaluated to decide whether there
is a trend across the whole category or whether the
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14 http://www.echemportal.org/echemportal/
index?pageID=0&request_locale=en [accessed March 2013]
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data justify allocating substances to a series 
of subcategories (OECD, 2007b; ECHA, 2008).

If the data suggest possible breakpoints, they should
be evaluated to ensure that this is genuine and not due
to other factors, such as the testing being carried out
in different laboratories, at different times or with
different animal strains (OECD, 2007b; ECHA, 2008).

Datasets can contain apparent outlier(s). In this case,
the results should be evaluated carefully to check
whether it is a real difference in a mechanism of
action across the category or whether the result should
be questioned (OECD, 2007b; ECHA, 2008).

Step 4: Construct a matrix of data availability

A matrix of data availability that contains the category
endpoints for each category member should be
constructed. The matrix should be ordered to reflect
any trends or progression within the category and it
should indicate where data are available or missing.
If possible, the cells should indicate the results of the
key studies. For data-rich substances, the matrix could
become very large and can be broken down into
groups of endpoints (OECD, 2007b; ECHA, 2008).
An example matrix is shown in Table 2.16.

Step 5: Perform a preliminary evaluation of the category
and fill data gaps

A preliminary assessment of the category should 
be carried out to determine the following.

• That the rationale of the category is supported, 
i.e. the category does exhibit one or more of the
trends postulated in the hypothesis.

• That the category is robust and contains sufficient,
relevant and reliable information on the category
members for the particular purpose. This should 
be checked for each endpoint, as there may be
sufficient information for some endpoints but not
for others.

The preliminary assessment is largely performed 
by expert judgement. The process is similar to the
approach used to fill in data gaps. If both of the criteria
above are satisfied for a particular endpoint, the data
gaps can be filled and the category can be finalised and
documented (OECD, 2007b; ECHA, 2008). 

If both of the criteria are not satisfied, then the
following options should be considered.

• If the data suggest that there is a pattern of effects
for some of the chemicals in the group, then the
category should be modified, for example, by
dividing it into subcategories.

• If the category is reliable for one or more
endpoints but adequate data do not exist, the

category approach may still be proposed but may
require additional testing (as described in Step 6
below). Animal welfare and financial issues would
influence the choice of chemicals and endpoints
for testing as well as the scientific basis for testing.

• If there are adequate data for an endpoint but no
pattern, it could be that the category is not
appropriate and should be abandoned.

Step 6: Perform and/or propose testing

If the preliminary assessment supports the rationale
for the category but the data or information on the
members are not sufficient, relevant or reliable, testing
may be proposed or performed. When proposing
testing, a number of factors should be considered, 
as follows.

• The proposed test should be influenced by 
the results of the preliminary evaluation of 
the category.

• If none of the members have any data for a
particular endpoint, it may be appropriate to test 
a limited number of selected category members.

• Testing can be used to provide evidence of a
particular effect that has been predicted by a trend
in the category.

The test plan should summarise the existing data and
how the proposed testing will be adequate. The matrix
of data is a tool to present the available data, which
displays the data for each endpoint for each category
member. If toxicity is expected to change across the
category (e.g. high to low toxicity), the members
chosen for testing should bracket both ends of the
toxicity range. If the category is large, testing should
also be included for one or more members in the
middle of the range. Subcategories or subsets of 
the category should be defined by the limits of the
subcategory and accompanied by data. There are 
no rules as to the number of cells that must be filled
within a data matrix; the acceptability is dependent 
on the members in the category, the endpoint and the
confidence in the extrapolated data (OECD, 2007b;
ECHA, 2008).

Test plans are intended to provide information about
the properties of the group as a whole, not necessarily
about any specific chemical. This means that key
substances identified for testing may have little or 
no commercial importance and may even need to be
synthesised specifically for this purpose. This may
still be more economical, both in terms of costs and
animal usage, than a conventional testing strategy
(OECD, 2007b; ECHA, 2008).
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Step 7: Perform a further assessment of the category

If new data are generated, the category should be
revised and reassessed to determine whether the 
two criteria detailed in Step 5 are met. 

If the results do support the category, the remaining
data gaps can be filled and the category finalised and
documented. 

If the results do not support the category, the options
are: a) to carry out further testing; b) to change the
category (for example by dividing it into
subcategories); or c) to abandon the category (OECD,
2007b; ECHA, 2008).

Step 8: Document the finalised category

The finalised category should be documented 
in a suitable reporting format (see Section 2.3.4).
Categories can be revised in light of new data 
and/or experience, or on the basis of new chemicals
being discovered or manufactured (OECD, 2007b;
ECHA, 2008).

2.3.3  Guidance  on  specific  types  of  category

Some examples of specific types of category (e.g.
chain length, metabolic pathways, chemical reaction
products and multi-constituent substances, isomers,
complex substances, metals and metal compounds) 
are described in ECHA, 2008 (pp. 105–120).

2.3.4  Reporting  format  for  the  category  approach

The following reporting format for the category
approach has been recommended by the OECD 
and at the EU level in relation to industrial chemicals
under REACH.

Category  definition  and  its  members
Category definition
1 Category hypothesis – Describe the molecular

structure that a chemical must have to be included
in the category. Provide a brief hypothesis for why
the category was formed, the hypothetical
relational features of the category, purported
mechanisms and trends in properties that are
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Table  2.16  Example  data  matrix

Chemical name Category Category Category Category
member member member member
1 2 3 4

CAS number CAS #1 CAS #2 CAS #3 CAS #n
Physicochemical data
Melting point
Boiling point
Density
Vapour pressure
Partition coefficient
Water solubility
Etc.
Environmental fate and pathway
Photodegredation
Stability in water
Transport and distribution
Aerobic biodegredation
Etc.
Environmental toxicity
Acute toxicity to fish
Acute toxicity to aquatic invertebrates
Toxicity to aquatic plants
Etc.
Mammalian toxicity
Acute oral toxicity
Acute dermal toxicity
Acute inhalation toxicity
Repeated dose toxicity
Genetic toxicity in vitro

- Gene mutation
- Chromosomal aberration

Genetic toxicity in vivo
Reproductive toxicity

- Fertility
- Developmental toxicity

CR16 DTP PRINT 160713.qxp  17/07/2013  14:17  Page 53



thought to collectively generate an association
between the members. All functional groups of the
category members need to be identified. If there is
a mechanistic reasoning to the category, describe
the foreseen mode of action for each category
member and if relevant describe the influence 
of the mode of administration (oral, dermal,
inhalation; OECD, 2007b; ECHA, 2008).

2 Applicability domain of the category – Describe
the set of inclusion and/or exclusion rules that
identify the ranges of values within which reliable
estimations can be made for category members.
Clearly indicate the borders of the category and 
for which chemicals the category does not hold
(OECD, 2007b; ECHA, 2008).

3 List of endpoints covered – List the endpoints 
for which the category approach is applied. 
Also indicate if for some endpoints the category
approach can only be applied to a subset of
the members of the category (subcategories)
(OECD, 2007b).

Category members

Describe all the category members as
comprehensively as possible. Provide CAS numbers,
names and chemical structures of all category
members (OECD, 2007b; ECHA, 2008).

Purity/impurity

Provide purity/impurity profiles for each member 
of the category, including their likely impact on the
category endpoints. Discuss the influence these
impurities are thought to have on physicochemical
parameters, fate and (eco)toxicology (OECD, 2007b;
ECHA, 2008).

Category  justification
Based on available experimental data (including
appropriate physicochemical data and additional test
results generated for the assessment of the category)
summarise how these results verify that the category 
is robust. This should include an indication of the
trend(s) for each endpoint. The data should also show
that functional groups not common to all the (sub)
category members do not affect the anticipated
toxicity. The available experimental results in the data
matrix should support the justification for the read-
across (OECD, 2007b; ECHA, 2008).

Data  matrix
Provide a matrix of data (category members vs
endpoints). It should be constructed with the category
members arranged in a suitable order (e.g. reflecting a
trend or progression within the category). In each cell,
the study result type should be indicated (e.g.
experimental result, experimental study planned, read-
across from supporting substance, trend analysis,
(Q)SAR). If experimental results are available, the key

study results should be shown in the data matrix
(OECD, 2007b; ECHA, 2008).

Detailed discussion of how data gaps are filled for
individual endpoints and individual category members
and the rationale for the chosen method should also be
provided (OECD, 2007b; ECHA, 2008).

2.3.5  Tools  for  category  formation  and  
read-aacross:  The  OECD  (Q)SAR  Toolbox

The OECD (Q)SAR Toolbox is computer software
developed with the aim of making (Q)SAR
approaches readily available and accessible and to
improve their regulatory acceptance. The philosophy
of the Toolbox is based on the ‘chemical category’
concept. The fundamental features of the Toolbox are
as follows.

• Identification of relevant structural characteristics
and potential mechanism or mode of action of a
target chemical

• Identification of other chemicals that have the
same structural characteristics and/or mechanism
or mode of action (analogues)

• Use of existing experimental data to fill the data
gap(s)

The identification of structural characteristics and
potential mechanisms or modes of action is achieved
with a set of ‘profilers’ in the module ‘Profiling’.
These profilers identify structural alerts involved in
specific reactions or binding mechanisms relevant for
different regulatory endpoints. Some of the profilers
included in the Toolbox are ‘Cramer classification’,
‘OASIS Acute Toxicity’, ‘protein binding’, ‘DNA
binding’, ‘Benigni/Bossa rule-base’, ‘ER binding’ and
‘BfR rule-bases for skin and eye irritation/corrosion’.

The Toolbox includes six sequential modules.

1 Chemical input – provides several means of
entering the chemical of interest or target chemical
and of making sure the molecular structure
assigned to it is the correct one.

2 Profiling – provides the means to profile the target
chemical to identify relevant structural
characteristics and potential mechanisms or modes
of action. This leads to the identification of
potential analogues of the target chemical.

3 Endpoints – provides a process of retrieving results
for regulatory endpoints for the identified
analogues which are stored in the Toolbox. This
data gathering can be executed in a global fashion
(i.e. collecting all data on all endpoints), or on a
more narrowly defined basis (e.g. collecting data
for a single or limited number of endpoints).
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4 Category definition – provides several means 
of grouping chemicals into a toxicologically
meaningful category that includes the target
molecule. This is the critical step in the workflow
and several options are available in the Toolbox 
to assist the user in refining the category definition
via sub categorisation.

5 Filling data gaps – provides three options for
making an endpoint-specific prediction for the
untested target chemical. These options, in
increasing order of complexity, are: read-across,
trend analysis and (Q)SAR models.

6 Report – the final module provides the user with 
a downloadable written audit trail of the functions
the user performed using the Toolbox to arrive at
the prediction.

2.3.6  Toxicologically  meaningful  categories  

Category formation is a topic of paramount
importance to predictive toxicology. The challenge in
grouping chemicals for hazard assessment is placing
them into groups that are meaningful for a particular
toxicity endpoint. This challenge arises because of the
discontinuity between chemical and toxicological
spaces, which are often endpoint-related. Substances
which are similar in structure can be dissimilar in
terms of toxic action, including the ability to elicit a
particular hazard endpoint, as well as potency within 
a particular hazard endpoint. Therefore, a means of
segregating toxicological domains or forming a
toxicologically meaningful category (TMC) is
essential, as using TMC increases the confidence 
that the predictions made are accurate (Cronin &
Madden, 2010).

Chemicals, historically, have been grouped together
using a common structural feature exhibited by all the
substances included in the group. However, inherent
to forming a TMC is that the compounds in the
category share a common mechanism of action or a
common adverse outcome pathway (AOP) leading to
coherent trends in their toxicological effects. An AOP
is a set of chemical, biochemical, cellular and
physiological responses that characterise the biological
effects cascade resulting from a particular molecular
initiating event (MIE).

As different hazard endpoints are determined by
different AOP, it is unlikely that the members of a
TMC will be the same for any two hazard endpoints.
Hence, the membership of TMCs tends to be endpoint
specific. 

It should be noted that while it is relatively easy to
form TMC for those hazard endpoints (e.g. irritation,
genotoxicity) with simple AOP where plain chemical
reactivity is the sole MIE, it is more difficult to form

such categories for more elaborate hazard endpoints
(e.g. repeated dose toxicity, developmental toxicity,
carcinogenicity) with complex AOP where damage is
the result of the propagation at the different biological
levels of a multitude of multiple MIE. 

Data to identify complex AOP and to measure 
the key events along the pathway are scattered 
and fragmentary. However, with the increasing
development of advanced systems’ biology, ‘omic’
technologies and other in vitro methods, there is the
potential to generate such information.

An example of a preliminary attempt to form a
category based on the concept of TMC comes from 
a recent research project undertaken by the nickel
producers. In this project, different nickel compounds
have been grouped together in relation to the
reproductive toxicity endpoint and other systemic
effects on the basis of bioavailability (bioaccessibility)
data for the nickel ion in biological fluids relevant to
different routes of exposures, such as sweat (for the
dermal route), stomach fluid (for the oral route) and
lung or interstitial fluid (for the inhalation route). The
industry has interpreted the results as to show that the
release of the nickel ion in relevant portal-of-entry
biological fluids is a better predictor of the systemic
availability and reproductive toxicity effects of nickel
compounds than their water solubility. This is because
water solubility is further removed from the molecular
initiating event leading to the adverse outcome. 

22..44  SStteeppwwiissee  aapppprrooaacchh  ffoorr  
tthhee  uussee  ooff  nnoonn-tteessttiinngg  ddaattaa
2.4.1  Introduction  and  structured  workflow

The following stepwise approach for the integrated
use of non-testing approaches has been proposed at
EU level in relation to industrial chemicals under
REACH. The workflow described, and shown in
Figure 2.3, is intended to be flexible so that it can 
be adapted to meet the specific needs of the user;
however, it is recommended that all the steps are
considered in order to increase confidence in the
overall assessment (ECHA, 2008). 

Step 0: Information collection

First the information that is required for the 
particular regulatory purpose should be considered
(ECHA, 2008).

A representative structure of the chemical of interest
should be selected. This is normally the two-
dimensional structural formula of the chemical in the
form of a SMILES code. The purity/impurity profile
may also be useful (ECHA, 2008).
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The structure of the chemical of interest should be
verified; for example by checking that the structure
agrees with the CAS number or formal chemical
name. This can be done using a ‘structure converter
tool’; some online tools that can be employed at this
step are listed below. 

• ChemID can be used to check CAS number,
chemical name and to identify the possible
structure.

• Ambit can be used to convert CAS to SMILES.

• CAS SciFinder is a definitive source of CAS
registry numbers, chemical names and structure
information.

• The (Q)SAR Application Toolbox contains
libraries that convert CAS numbers to SMILES. 

The available information for the parent chemical
should be collected. This should include
physicochemical properties, toxicity data,
experimental data and non-testing data. Some sources
of data and information are listed below.

• The European Chemical Substances Information
System (ESIS) 

• The (Q)SAR application toolbox contains a
database of available experimental data, a library
of (Q)SAR models, chemical categories and a
database of (Q)SAR predictions

• The (Q)SAR model database (QMDB) has robust
summaries of (Q)SAR that can be searched by
endpoint or chemical; it can provide information
on whether the chemical is in the training or test
set of some models

• The (Q)SAR prediction database (QPDB) can be
used to generate predictions using models and to
store these predictions

• Chemical category database contains an inventory
of existing categories

A working matrix of data availability, endpoint by
endpoint, should be built and the information gaps
identified. From the working matrix, an endpoint can
be selected for which a data gap has been identified,
and processed through the remaining steps of the
workflow (ECHA, 2008).

Step 1: Preliminary analysis of reactivity, uptake 
and fate

The preliminary analysis of reactivity, uptake and fate
is based on existing information as well as inferences
made by using physicochemical data.

First, information about the reactivity (biotic and
abiotic) of the parent chemical should be collected;
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Figure  2.3  Flowchart  for  the  use  of  non-ttesting
approaches  in  the  regulatory  assessment  of
chemicals  (ECHA  2008)
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this can be obtained from peer-reviewed literature and
from tools and databases, including CAS SciFinder,
MDL Reaction Database, TIMES, CATABOL,
METEOR, META, MCASE and HYDROWIN as part
of EPIWIN (for hydrolysis only). The stability of the
parent chemical can be further estimated by analysing
fragments and molecular orbital energy; at present this
is performed by experienced chemists. The working
matrix should be updated with the collated
information by adding a row with information about
metabolites and reaction products.

A preliminary analysis of uptake and fate is performed
by taking into account the following considerations
(ECHA, 2008).

• The effect of molecular weight, size, log Kow,
electric charge and stability on uptake (and
toxicity)

• Whether ionisation can take place at the relevant
pH and whether this affects uptake and fate

• The chemical reactivity (type of reactions)
expected for the parent chemical

• The metabolites and reaction products that are
generated 

Finally, a suitable query chemical should be selected.
The preliminary analysis should be used to determine
which chemicals (parent or reaction product or
metabolite) are suitable for modelling the endpoint 
of interest. The remaining steps are then applied to the
query chemical(s) identified. This first step may also
help assess the likelihood of exposure to the organism
(tissue) or environmental compartment (ECHA, 2008).

Step 2: Use classification schemes for endpoint 
of interest

Information on the likely biological activity of the
query chemical may be obtained using classification
schemes for the endpoint of interest. For example, the
classification scheme developed by Cramer et al.
(1978) is useful for evaluating the likely systemic
toxicity of a chemical. Toxtree implements the Cramer
classification scheme. 

This step may help to classify the mode of toxic action
of the chemical. This information is useful in a later
step when evaluating which (Q)SAR models should 
be applied (ECHA, 2008).

Step 3: Search for structural alerts for endpoint of
interest

In this step, structural alerts for the endpoint of
interest are searched. Software programs that are
available to perform this analysis include Derek
Nexus, MCASE and Leadscope. This step may help
identify which hazards are likely to be present or
absent (ECHA, 2008).

Step 4: Preliminary assessment of expected type 
of reactivity, uptake, toxicity and fate

In this step, which requires expert judgement, 
a preliminary assessment of the expected reactivity,
uptake, toxicity and fate profile of the parent chemical
is performed by using the outcomes of the previous
steps applied to all the relevant query chemicals.

Step 5: Read-across

This step is aimed at filling data gaps for all the query
chemicals using a read-across analogue approach.
Read-across is based on the identification of similar
chemicals, so the first step is to establish whether the
query chemical belongs to an existing category. If the
query chemical does not belong to an existing
category and cannot reasonably be associated with
one, an appropriate analogue should be searched
(ECHA, 2008). Tools to help with analogue searching
are listed below.

• Analog Identification Methodology (AIM)

• AMBIT (Ideaconsult Ltd)

• Danish (Q)SAR Database

• ChemFinder

• ChemID Plus Advanced

• Leadscope

• Superfragment (BioByte Inc)

• Toxmatch (ECB)

Once relevant analogues are identified, the
experimental data available on these analogues 
should be collected and stored in the working matrix
(ECHA, 2008).

Subsequently, read-across should be performed 
with the information from the relevant analogues. If,
however, the read-across is unsuccessful in providing
a reliable estimate, the search for other analogues
should be expanded (ECHA, 2008).

Step 6: (Q)SAR

In this step, predictions of uptake, toxicity and 
fate are generated using (Q)SAR or expert systems.

First the user should retrieve the available predictions
for the endpoint of interest from the (Q)SAR
prediction database. If this database does not contain
predictions for the query chemical, relevant models
can be searched in the (Q)SAR model database.
Information gathered in previous steps is useful to aid
selection of a suitable model. Valid (Q)SAR should be
assessed to check that the query chemical is within the
applicability domain of the model. This assessment
may be performed by using appropriate tools (e.g.
Ambit Discovery; ECHA, 2008).
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If relevant (Q)SAR have not been found using the
databases above, other models should be searched.
When relevant (Q)SAR are identified, predictions for
the query chemical should be generated and added to
the working matrix (ECHA, 2008).

Step 7: Overall assessment

Steps 1 to 6 are assessed for the chemical and the
endpoint(s) of interest to generate an overall
assessment. The toxicity of the parent chemical is
assessed using the information obtained for all the
query chemicals (metabolites, reaction products and
analogues; ECHA, 2008). 

22..55  IInntteeggrraatteedd  tteessttiinngg
ssttrraatteeggiieess  aanndd  tthhee  pprreeddiiccttiioonn
ooff  ttooxxiicc  hhaazzaarrdd

Over the past two or three decades there has been
mounting pressure to reduce reliance on laboratory
animal testing for predicting hazards and assessing
risks in relation to industrial chemicals and chemical
products of various kinds including pharmaceuticals
and agrochemicals, household and personal care
products. Initially, this pressure was largely the result
of ethical and animal welfare concerns, but the
emphasis is now increasingly on scientific and
economic considerations. It is increasingly recognised
that animal tests are often not relevant for predicting
hazard in humans because of species differences of
various kinds. In addition, they are expensive and can
a long time to perform (Cronin & Madden, 2010).

In response to this situation, a large amount of effort 
is being invested in the development of non-animal
test procedures which make use of existing data and
bioinformatics, novel in chemico, in silico and in vitro
approaches and, where possible, ethical studies in
humans. The result is an increasing complexity and
variety of methods based on mechanisms of action at
the molecular, cellular, tissue, organ and system
levels, which are suited to answering highly specific
questions rather than to providing information on toxic
effects of all kinds (Cronin & Madden, 2010).

This means that the available tests will have to be used
intelligently and selectively in combination as batteries
and/or in tiered hierarchical schemes in what have come
to be known as integrated testing strategies (ITS). 

Before any ITS can be considered acceptable for use,
especially in compliance with regulatory requirements,
it must be established that it is relevant and reliable
for a particular purpose (e.g. for classification and
labelling, or risk assessment purposes).

ITS are hierarchical in nature and are used in a
stepwise fashion, progressing from the evaluation 
of pre-existing data and a consideration of the
physicochemical properties of a test item, via in silico
modelling, to the use of in vitro methods followed –
sometimes and where necessary – by in vivo tests in
animals and in human volunteers. The stepwise
approach usually represents a decision tree scheme,
that is, at the conclusion of each step decisions can be
made about whether or not further testing is advisable
and, if so, which tests should or should not be
performed (Cronin & Madden, 2010).

To secure the regulatory acceptance of ITS, there
should be a rigorous evaluation, endpoint by endpoint,
of which alternative systems could be considered
worth the effort after objective comparison with their
animal test rivals. This should be primarily the
responsibility of companies producing the materials
requiring testing, in collaboration with those capable
of developing the alternative methods and the
schemes. It is also important that regulatory bodies
give preference to WoE approaches above very
prescriptive and highly specific tests, and that testing
requirements are adapted depending on the nature of
the chemical, its projected use and the likely human
exposure (Cronin & Madden, 2010).

ITS have been the focus of a recent European project
developed under the Sixth Framework programme
called OSIRIS15. The project aimed at optimising
strategies for risk assessment of industrial chemicals
through integration of non-test and test information.
To this end, operational procedures that guide a
transparent and scientifically sound evaluation of
chemical substances in a risk-driven, context-specific
and substance-tailored manner were developed, tested
and disseminated. For the first time, ITS have been
equipped with decision frameworks that include
chemical and biological read-across, in vitro results, 
in vivo information on analogues, qualitative and
quantitative SAR, thresholds of toxicological concern
and exposure-based waiving.

The central software outcome of OSIRIS is the
OSIRIS web tool. This tool guides in performing ITS
on skin sensitisation, repeated dose toxicity,
mutagenicity, carcinogenicity, bioconcentration factor
and aquatic toxicity. The ITS are implemented as user
interactive workflows that weigh different types of
data (obtained from databases computed with models
or input by the user). The ITS goal is to conclude
whether there is sufficient information for
classification and labelling and risk assessment
purposes, and to suggest the appropriate test where not
enough information is available for decision making.

— 58 —

— Available Techniques —

15 http://www.osiris.ufz.de [accessed March 2013]
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3Examples and Case Studies of
Current Use of Predictive
Approaches by UK Government
Department and Agencies

The main objective of this section is to provide real
examples of how predictive approaches are currently
used by UK government departments and agencies 
for regulatory purposes.

It is hoped that these examples will help:

1 to identify issues requiring further work;

2 to illustrate the thought process behind 
the application of these techniques;

3 to increase the transparency of the decision-
making process undertaken by UK government;

4 to identify the limits of these techniques;

5 to facilitate understanding of these approaches;

6 to enhance the regulatory acceptance of these
tools;

7 to expand the opportunities for future application
of predictive toxicology.

33..11  CCaassee  ssttuuddiieess  pprroovviiddeedd  
bbyy  HHSSEE
3.1.1  A  case  study  for  the  application  of  
a  read-aacross  approach  at  HSE

Zineb (zinc ethylenebisdithiocarbamate) is an existing
active substance for use in biocidal products. An
evaluation of the risks to human health and the
environment from the use of such zineb-containing
products has been performed within the scope of
Directive 98/8/EC (BPD – Biocidal Products
Directive).

The toxicity dataset for zineb required under the BPD
is not complete as, for some endpoints (toxicokinetics
by the oral route, subchronic and chronic toxicity,
mutagenicity, carcinogenicity, reproductive toxicity
and neurotoxicity), studies are either not available or
are not of the quality standard required by the BPD.

For these endpoints, qualitative and quantitative read-
across from data on mancozeb has been performed.
The approach was proposed by the applicant.

Read-across from mancozeb is scientifically justified
on the following basis.

a) Zineb and mancozeb have very similar molecular
structures (Figure 3.1). They are both
ethylenebisdithiocarbamate (EBDC) salts containing
the metals zinc and/or manganese. In zineb the only
metal ions present are Zn2+, whereas mancozeb
contains both Mn2+ and Zn2+ in the ratio 10:1.

b) The physicochemical properties associated with the
dissociation of the molecules to release the EDBC2–
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Figure  3.1  Molecular  structures  of  Zineb  
and  Mancozeb
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anions and the metal cations are very similar for zineb
and mancozeb.

c) It is widely recognised that the effects of EDBC
compounds are entirely due to the EDBC anion. 
The higher content of Zn2+ in zineb is not considered
to be of toxicological relevance as zinc is an essential
element of the body and is of relatively low toxicity 
in humans.

d) Zineb and mancozeb show comparable ADME
profiles. Oral toxicokinetic data on mancozeb and
public domain ADME studies on zineb show that both
substances are rapidly and extensively absorbed by the
oral route, are widely distributed around the body, are
extensively metabolised to similar metabolites, with
ethylene thiourea (ETU) being the major metabolite
(~20% of the administered dose) for both substances,
and are rapidly excreted, mainly via urine.

e) Where data are available for both substances, 
these show that zineb and mancozeb have comparable
toxicological profiles. They are both of low acute
toxicity, they are not skin or eye irritants and they 
both cause developmental toxicity in the presence of
maternal toxicity. In repeated dose toxicity studies in
rats and dogs, they both produce effects on the thyroid
gland at similar dose levels. It is well documented that
ETU, their common metabolite, is the entity
responsible for the observed thyroid effects.

Conclusion: The read-across approach was accepted
by all EU Member State regulatory authorities.

3.1.2  A  case  study  for  the  application  of  a  
read-aacross  approach  at  HSE  where  the
proposition  was  rejected

NBM (4-(2-nitrobutyl) morpholine) is an existing
active substance for use in biocidal products. An
evaluation of the risks to human health and the
environment from the use of NBM-containing
products is required within the scope of Directive
98/8/EC (BPD – Biocidal Products Directive). HSE,
as the UK competent authority responsible for the
implementation of the BPD, was the designated
Rapporteur Member State in charge of the evaluation.

The toxicity dataset for NBM prescribed by the BPD
was not complete as, for some endpoints (chronic
toxicity and carcinogenicity), studies were not
available. For these endpoints the industry duty holder
had proposed that read-across from data (96-week
drinking water study in mice and 104-week inhalation
study in rats) on morpholine be performed, mainly on
the basis that morpholine is the only major in vivo
metabolite of NBM. 

HSE assessed the applicant’s request and came to the
conclusion that the proposed read-across approach
from morpholine had numerous shortcomings and was
not sufficiently sound from a scientific point of view
for the following reasons.

a) NBM contains the two moieties of 2-nitrobutane
and morpholine (Figure 3.2). 

Figure  3.2  Chemical  structure  of  4-((2-nnitrobutyl)
morpholine  (NBM)

N-dealkylation of NBM (Dow Chemical Company
BIOBAN P-1487) leads to the formation of
morpholine and 2-nitrobutanal. At the same time,
NBM could also be metabolised by reduction of the
nitro group by the intestinal microflora to generate
morpholine and 2-aminobutanal, as shown below
(Figure 3.3).

A well-conducted oral toxicokinetic study in rats with
NMB (radiolabel located within the morpholine ring
structure) showed that only up to a maximum of 30%
of NBM could be estimated to be metabolised to
morpholine and its derivative, N-methylmorpholine 
N-oxide. A significant amount of NBM (up to 70%)
was predicted to be converted to 2-nitrobutanal and 
2-aminobutanal and their carboxylic acid derivatives.

Overall, therefore, HSE considered that the evidence
did not support the claim that morpholine was the only
major in vivo metabolite of NBM. Performing a read-
across from data on morpholine could not have taken
into account the potential toxicological effects of the
other NBM metabolites.

b) (Q)SAR model predictions generated by HSE for
the two aldehyde derivatives (2-nitrobutanal and 
2-aminobutanal) indicated a concern for mutagenicity
and carcinogenicity which could not have been
explored or addressed by the data on morpholine.

c) The two chronic/carcinogenicity studies available
on morpholine were relatively old investigations of
low reliability and quality.
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d) Where data were available for both NBM and
morpholine, a reliable comparison of the toxicity
profiles of NBM and morpholine was not possible
owing to differences in species, study duration, 
dose levels, methodology, study quality and
parameters investigated. Furthermore, the limited
information available indicated not only potential
quantitative (potency) differences, but also qualitative
discrepancies (e.g. in some of the target organs 
of toxicity).

Conclusion: HSE rejected the proposed read-across
approach and the NBM submission was eventually
withdrawn by the applicant. 

3.1.3  A  case  study  for  the  application  of  a  simple
category  approach  at  HSE

Coco alkyl amines, tallow alkyl amines, hydrogenated
alkyl amines, octadecylamine and (Z)-octadec-9-

enylamine are five primary alkyl amines included in
the 4th priority list of the Existing Substances
Regulation (EEC 793/93), an EU programme for
identifying risks from industrial chemicals to human
health and the environment. 

The toxicity dataset for the majority of these alkyl
amines is very limited. For some endpoints, data are
available only on one of the five substances. To fill
these data gaps, a category/grouping approach was
used. The approach was proposed by industry.

The basis for applying such an approach is as follows.

a) The five alkyl amines under review share structural
similarities, that is, the terminal amine group and the
linear hydrocarbon chain (Figure 3.4). Each of the five
alkyl amines is a mixture of primary straight chain
alkyl amines with different degrees of saturation 
(no, 1, 2 or 3 double bonds).
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b) There are two important trends in this group of
alkyl amines: increasing chain length and increasing
saturation (double bonds).

• Coco alkyl amines: C12–14, <10% unsaturated
fraction

• Hydrogenated tallow alkyl amines: C16–18, <5%
unsaturated fraction

• Tallow alkyl amines C16–18, >40% unsaturated
fraction

• Octadecylamine C18, <5% unsaturated fraction

• (Z)-Octadec-9-enylamine C18, >70% unsaturated
fraction

c) On the basis of these structural similarities and
these trends, it can be predicted that as all members 
of the group have a terminal amine group, their pH is
basic; hence they will all have irritant and/or corrosive
properties. It can also be predicted that with the
increasing degree of unsaturation, the reactivity will
increase. In addition, the longer the alkyl chain
attached to a double bond, the greater the reactivity.
Based on these considerations, the reactivity in this
group of alkyl amines is expected to increase in the
following order: octadecylamine, hydrogenated tallow
alkyl amines, coco alkyl amines, tallow alkyl amines,
(Z)-octadec-9-enylamine.

d) For those endpoints where data were available 
for all members of the group, the predicted order 
of increasing reactivity was confirmed.

Conclusion: The category approach was accepted by
all EU Member State regulatory authorities. For those
endpoints where data were available only at the higher
or more reactive end of the category, a straight read-
across was performed as this represented the worst
case. For those endpoints where data were available 

only for substances at the lower end or in the middle
of the category, further testing of the higher-end
members was requested. 

This category approach was also recently used by 
the European Chemical Agency’s Risk Assessment
Committee when forming an opinion on a proposal 
for harmonising the classification and labelling of
these substances. The trend in reactivity was found
relevant for both irritant potential and the level of
classification for acute toxicity, which is assigned 
on the basis of potency.

3.1.4  A  case  study  for  the  application  of  a  
QSAR  prediction  at  HSE

The toxicological significance of impurities in
commercial sources of pesticide active substances 
and the toxicity of metabolites formed in crops or 
the environment needs to be assessed. One of the
requirements is to perform a (Q)SAR evaluation of 
the metabolite or impurity. No specific guidance is
given on how to perform the (Q)SAR, nor on how to
interpret the output. HSE finds it useful if the (Q)SAR
results for the metabolite or impurity are presented
alongside those for the active substance. This permits
the alerts to be set in context of the observed toxicity
of the parent and effort focused on any alerts that are
unique to the metabolite or impurity.

An example of this approach is presented below 
for a new manufacturing source of the pesticide
pendimethalin, containing low levels of a nitro
impurity (NB this impurity is in the public domain)
not present in the original technical material, based on
Derek Nexus. Chemical structures of the pesticide and
impurity are given in Figure 3.5, with the output from
Derek Nexus presented in Table 3.1.
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In this instance, alerts 105, 544 and 329 can be
discounted as they are triggered by structures common
to both compounds. 

The remaining alerts are related to the N-nitro
grouping, but also triggered by N-nitroso compounds.
Pendimethalin contains low levels of a number of 
N-nitroso compounds and it was considered
acceptable to read-across from the N-nitroso
compounds present in pendimethalin to N-nitro-
pendimethalin. The material tested in studies covering
the endpoints identified in the alerts and the current
approved technical material contains higher overall
levels of N-nitroso compounds than the total level 
of N-nitroso compounds plus N-nitro-pendimethalin 
in the new source.

Conclusion: It was concluded that the levels of 
N-nitro-pendimethalin present in the new source would
be unlikely to have an impact on the toxicity profile of
pendimethalin. The new source of pendimethalin was
considered to be toxicologically equivalent to the
existing source and authorised for use.

33..22  CCaassee  ssttuuddiieess  pprroovviiddeedd  
bbyy  HHPPAA
3.2.1  Use  of  a  surrogate  marker  approach  by  the
HPA  to  assess  the  toxicity  of  polycyclic  aromatic
hydrocarbons  in  soil  

Polycyclic aromatic hydrocarbons (PAH) are a group
of organic compounds that contain two or more fused
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070 – Carcinogenicity 
(N-nitro or N-nitroso)

No - Yes Plausible

105 – Carcinogenicity 
(aromatic nitro-)

Yes Plausible Yes Plausible

544 – Hepatotoxicity 
(aromatic nitro-)

Yes Plausible Yes Plausible

007 – Mutagenicity
(N-nitro or N-nitroso)

No - Yes Plausible

329 – Mutagenicity 
(aromatic nitro-)

Yes Plausible Yes Plausible

007 – Chromosome damage
(N-nitro or N-nitroso)

No - Yes Plausible

329 – Chromosome damage 
(aromatic nitro-)

Yes Plausible Yes Plausible

447 – Skin sensitisation
(N-nitro or N-nitroso)

No - Yes Plausible

566 – Teratogenicity
(N-nitro or N-nitroso)

No - Yes Plausible

Table  3.1  Alerts  for  pendimethalin  and  N-nnitro-ppendimethalin  generated  using  Derek  Nexus

Alert Pendimethalin N-nitro-pendimethalin
Present Confidence Present Confidence
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aromatic rings. Several PAH and mixtures of PAH
have been shown to be genotoxic and to cause cancer
in experimental animals. Former industrial
‘brownfield’ sites are important sources of exposure to
PAH, for example former gasworks sites that are often
contaminated with coal tar residues. Consequently it is
important to assess the risk posed by PAH present in
soil at such sites so that the risk to health can be
reduced to a tolerable level. 

Risk  assessment  challenges
It is difficult to assess mixtures of similar chemicals 
of PAH since the hazard, mechanism of toxicity and
potency may vary among chemicals. One approach
would be to determine the hazard posed by each
individual PAH and to estimate the dose associated
with a minimal risk of adverse health effects, thereby
allowing the risk associated with exposure to each
individual PAH to be assessed. Unfortunately the
toxicity database and analytical methods available 
for these chemicals are insufficient to perform such 
a detailed risk assessment. Furthermore this approach
would not take account of any possible combined
effects of a mixture of PAH. The toxic equivalency
approach is considered inappropriate because PAH
cannot be considered to act by the same mechanism 
of action. Hence it is necessary to assess the risk
posed by the mixture of PAH using other methods.

Surrogate  marker  approach
The surrogate marker approach estimates the toxicity
of a mixture of PAH in an environmental matrix by
using data from toxicity studies in which a PAH
mixture of known composition was tested. Exposure
to the surrogate marker (usually benzo[a]pyrene
(BaP)) is assumed to represent exposure to all the
PAH in the environmental matrix. Thus the level 
of toxicity ascribed to the surrogate represents (is
proportional to) the toxicity of the PAH mixture. 

This method is recommended by the HPA when
providing advice on the risk assessment of PAH in soil
to local authorities. It is based on the surrogate marker
approach that is supported by European Food Safety
Authority (ESFA) and Joint WHO/FAO Expert
Committee on Food Additives (JECFA) for risk
assessment of PAH in food. The critical toxicity study
used was a two-year carcinogenicity study by Culp 
et al. (1998) in which mice were fed two coal tar
mixtures containing several PAH. 

Evaluation  of  the  PAH  profile  in  soil
Before recommending this approach, the HPA
evaluated the analytical data from 52 contaminated
sites (1848 individual soil samples) to assess the
variability of the PAH profile (BaP and seven other
genotoxic PAH) in soil. 

BaP was present in all sites that were reported to be
contaminated with PAH. The absolute concentrations
of the individual PAH were highly variable. However,
the variability of the PAH profile in relation to level 
of BaP was low. The low variation means that the
level of BaP is a good predictor of the levels of the
other PAH that may be present in the soil. The relative
profile was also similar to the relative profile of the
eight PAH in the coal tar mixtures used in the Culp 
et al. (1998) study that is pivotal to the risk
assessments by EFSA and JECFA. 

The findings indicated that BaP is a suitable surrogate
marker to represent the amount of the eight genotoxic
PAH that are commonly measured in contaminated
soil. There is some uncertainty in using this approach;
for example, the unknown presence of a more potent
PAH, such as dibenzo[a,l]pyrene, could affect the
overall carcinogenicity of the PAH mixture.

Conclusion  
The surrogate marker approach is used by the HPA
and is recommended to the contaminated land
community to assess the health risks of PAH in 
soil. The interim oral Health Criteria Value (minimal
risk level) for PAH in soil, used and recommended 
by the HPA, is based on the BMDL10 value 
(0.1 mg kg-1 bw day-1) proposed by JECFA and
derived from the Culp et al. (1998) study. The
uncertainty in this approach, such as the potential
unknown presence of a more potent PAH such as
dibenzo[a,l]pyrene, is acknowledged.

Further information on the surrogate maker approach
is available on the HPA website16. 

3.2.2  A  case  study  for  the  application  of  a  read-
across  approach  at  FSA

Mixed  halogenated  dioxins

Dioxins, dibenzofurans and biphenyls (collectively
referred to subsequently as dioxins) are chemical
compounds formed as unwanted by-products in certain
industrial processes and fires. They are persistent in
the environment, and are known to cause a wide range
of toxic effects in animals. Effects in humans have
only been found at higher levels. Levels of dioxins in
food and the environment have declined substantially
since the 1980s.

A number of expert groups including the Scientific
Committee on Food (SCF), WHO and the Committee
on Toxicity (COT) have previously set a tolerable 
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16 http://www.hpa.org.uk/Publications/ChemicalsPoisons/
LandContamination/ContaminatedLandInformationSheets/1012Cont
aminatedLandinfosheetPAHs/ [accessed March 2013]
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daily intake (TDI) for chlorinated dioxins (dioxins
which contain chlorine but not bromine). The TDI 
is a level below which harmful effects are not
expected to occur. The FSA monitors the presence 
of these compounds in food.

All dioxin-like compounds produce similar toxic
effects, but some are more potent than others. 
The toxicity of each dioxin compound is expressed
relative to that of a ‘reference’ compound, to give 
a toxic equivalency factor (TEF). The total dioxin
activity in a food sample, expressed as toxic
equivalent (TEQ), is determined by adding the results
obtained by multiplying the concentration of each
compound by its TEF.

The FSA funded research to develop methods to
measure the levels of mixed halogenated dioxins
(dioxins containing both chlorine and bromine) 
in food. Previous research had focused on dioxins
containing either chlorine alone or bromine alone
(chlorinated or brominated dioxins).

There are no agreed TEF for mixed halogenated
dioxins. Applying the TEF for the equivalent
chlorinated compounds made it possible to estimate
the contribution of mixed halogenated dioxins to total
dioxin activity. This approach had previously been
used for brominated dioxins. If anything, this would
be expected to overestimate that contribution, since
the available evidence suggests that mixed
halogenated (and brominated) compounds are less
toxic than the equivalent chlorinated compounds.

The mixed halogenated compounds measured were
selected on the basis of their expected levels in the
environment and their toxicity in experimental animals
or model systems, and with regard to practical
considerations concerning their production.
Measurements were made in similar foods to those
tested in previous studies that have looked at levels 
of chlorinated and brominated dioxins.

Although only a small number of all the possible
mixed halogenated dioxins were surveyed, those
whose chemical structures were expected to result 
in the greatest toxicity were over-represented. The
contribution of mixed halogenated dioxins to total
dioxin activity in the foods tested was determined.

The major contribution to the total dioxin toxic
activity in the foods measured came from chlorinated
compounds. Brominated compounds made a much
smaller contribution, and mixed halogenated
compounds contributed even less. 

Taking account of these relative contributions and
dietary exposures to chlorinated dioxins, the COT
concluded that the measured levels of mixed
halogenated dioxins in food did not indicate a health
concern (COT, 201017).
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17 COT statement on occurrence of mixed halogenated dioxins and
biphenyls in UK food. Available from
http://cot.food.gov.uk/pdfs/cotstatementhalogenatedioxins201002.pdf
[accessed March 2013]
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4Conclusions and
Recommendations

44..11  SSuummmmaarryy  ooff  ccuurrrreenntt  uussee
bbyy  UUKK  ggoovveerrnnmmeenntt

The primary objective of chemical safety regulation 
is to protect human health and the environment. This
involves the identification of a chemical’s hazards,
associated risks as a consequence of the exposures 
that can or could arise, and the implementation of
appropriate control measures. To facilitate this task, 
a comprehensive data package on the respective
chemical is often required, which usually involves 
the conduct of toxicity testing, sometimes in vitro but
frequently in vivo. However, societal, legislative and
economic pressures are increasing the drive to reduce,
refine and replace the use of animals in toxicity
testing. There are also situations in which there is not
the regulatory need to undertake toxicological testing,
nor the regulatory leverage to compel such testing to
be done. Substantial work has been undertaken by
industry and academia to establish alternatives and/or
supplementary additions to animal testing (including
the development of the techniques described in
Section 2), but regulatory acceptance is critical 
to ensure their wider use. 

As part of this project we examined the use of
predictive approaches (non-testing methods based on
structure–activity relationship) in human health hazard
assessment across UK government departments and
agencies responsible for the safe use of pesticides,
biocides, medicines, food and industrial chemicals 
and the assessment of contaminants. A workshop to
explore in more depth the perception and use of
predictive approaches across UK government
regulatory bodies was held in January 2012. These
techniques are not routinely utilised within these
bodies, although there are certain situations in which
they may be applied either by the regulators or by
those submitting data. Read-across and grouping
approaches are generally more commonly used than
(Q)SAR. The scenarios in which these approaches are
applied are discussed below, together with the

requirements identified as being essential for their
successful adoption.

Scenario (i) As part of a data package submitted 
by the duty holder

Several regulatory programmes require duty holders 
to complete and submit data packages on chemicals;
the chemicals covered by such schemes include active
substances used as pesticides, biocides, human and
veterinary medicines; general (industrial) chemicals;
food additives and food contact materials. In this
scenario, the relevant legislation generally prescribes
fairly rigid information requirements (with explicit
statements of the test guidelines to be followed) that
must be met for the data package to be in compliance;
an exception to this is REACH, which encourages the
use of alternatives to animal testing and includes
‘rules for adaptation from the standard information
requirements’. 

In this scenario, a major barrier to the more
widespread use of, in particular, (Q)SAR approaches
is their lack of regulatory acceptance as stand-alone
methods, as a consequence of the absence of
consistently and demonstrably reliable predictions.
Notwithstanding, in some cases the duty holder may
be allowed to utilise in silico approaches to support
existing data. However, most commonly read-across 
is used (e.g. non-clinical data from existing similar
products for generic medicines).

The identified requirements of the regulator in this
situation are for the submission to make clear how 
one was to:

• understand the prediction, in terms of 

- its relevance and suitability to the chemical and 
the endpoint under investigation

- its reliability

- clarity of justification and sufficiently detailed 
reporting 
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- how it agrees or disagrees with other available 
information

• be confident that the substance is within the
applicability domain of the method

• be able to accept, reject or request modification 
of a prediction with confidence.

It is noteworthy that in this scenario the regulator 
has the option to request further information from 
the duty holder to support the prediction, for example
a justification that the model used is suitable for the 
test substance. 

Scenario (ii) To support a non-standard submission
made by industry

Predictive approaches may be used and/or promoted
by the regulator to support a non-standard submission
made by industry if a) the relevant legislation provides
flexibility by allowing the use of predictive
approaches to fulfil certain information requirements
(as, for example, under the PPPR for groundwater
metabolites, impurities and plant metabolites), or b) 
to provide support for and verification of information
submitted (e.g. under NONS; Notification of New
Substances). In this scenario, preference is given to
computational tools rather than read-across and
grouping approaches as they tend to be less resource
intensive and provide answers more quickly. When 
the prediction is performed by the regulator, a (Q)SAR
tool that is readily available within the department or
agency is most commonly used.

A predictive approach to support a non-standard
submission made by industry may be performed by
the regulator or by industry at the regulator’s request.
When the prediction has been performed by industry,
the requirements of the regulator would be the same 
as those listed under Scenario (i). 

Where the prediction is performed by the regulator,
the identified needs are to: 

• have sufficient expertise to

- select the most appropriate tool(s) for the 
chemical and the endpoint(s) under investigation

- perform the analysis

- evaluate the prediction in terms of its relevance 
and reliability

• have the appropriate tools available. 

As in Scenario (i), the regulator has the option to
engage in dialogue with the duty holder over the
suitability and outcome of a prediction, and to request
further justification of or information on its use.

Scenario (iii) There is no regulatory option to request
further data from the duty holder

This scenario may include, for example, the
assessment of environmental contaminants in 
drinking water, air or landfill sites, or, in some 
limited circumstances, classification and labelling 
of substances within the scope of the CLP Regulation. 
In this scenario there is no option in the legislation 
to request further test data (e.g., C&L) or it is very
difficult to pinpoint one or more duty holders (e.g.,
contaminants). The prediction is performed by a
regulatory authority. This may then require review, 
as is sometimes the case when classification and
labelling proposals have been prepared by a regulatory
body from another EU member state. Any tools that
are available and with which the assessor is familiar
may be used, such as (Q)SAR or a surrogate marker
(see the HPA case study in Section 3.2).

The identified needs of the regulator in this situation
are to:

• have sufficient expertise to 

- select the most appropriate tool(s) for the 
chemical and the endpoint(s) under investigation 

- perform the analysis 

- evaluate the prediction in terms of its relevance 
and reliability

• have the appropriate tools available.

Scenario (iv) A rapid answer is needed to a problem or
question (with acceptance of its uncertainty) 

This situation may arise in emergency situations such
as incidents of food contamination. Important
decisions are likely to be based on the outcome of a
prediction, as there is no time to request or conduct
testing; additional information to support or refute 
the prediction may not be available. Read-across 
has generally been applied in this situation. 

The identified needs of the regulator in this situation
are to have:

• immediate access to the tool(s)

• familiarity with and confidence in the use of the
tool so that a prediction can be generated quickly

• expertise in the interpretation of the prediction

• confidence that the tool gives a robust prediction.
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44..22  RReeccoommmmeennddeedd  bbeesstt
pprraaccttiiccee

In Section 2, minimum criteria were proposed or
established, to be taken into account when predictive
approaches are used to perform and/or inform on risk
assessment to ensure that the prediction is reliable and
valid. The most critical ones are presented below. 

• The chemical structure of the substance should be
known, including the potential for isomers. In
some models the ability to translate this into a 3-D
structure improves predictivity, as 3-D descriptors
are important in terms of receptor fit and binding.

• For mixtures, the composition of the mixture
should be known with a degree of certainty, or at
least the ability to exclude certain classes of highly
toxic chemicals.

• The chemical structure should be within the range
of structures that are covered by the approach
being used (applicability domain). 

• Any algorithms should be based on a broad range
of reference chemicals (the training set) or, if not,
the limitations should be specified.

• The model should use interpretable descriptors,
be statistically sound and produce transparent and
clear results.

• Where the output from running a substance
through a model is that no alerts are generated, 
this should be checked to see if this is because 
the structure is known not to produce effects
(reassuring) or that there is no alert because no
data have ever been generated on a particular
structure (not reassuring).

• Basic physicochemical properties such as
volatility, solubility or partition coefficients and
pH should be available. These can be relevant to
the hazard (e.g. extreme pH) or potential for
exposure (e.g. high volatility increases the need 
for information on inhalation exposures). 

• The underlying data being used for extrapolation
or interpolation should be of good quality. If the
only available data are of poor quality they may
still be used in a prediction, but the limitations
should be acknowledged and if necessary taken
into account in the final risk assessment. Some
(Q)SAR programs provide either a quantitative 
or qualitative indication of the confidence of a
prediction.

• Where possible, interpolation within a group of
related chemicals is preferred to extrapolation 
from one chemical.

• Greater confidence is obtained where a
combination of predictions from different methods
(e.g. a statistical (Q)SAR and an expert system
covering different chemical spaces) is used
(consensus modelling).

In addition, when applying or evaluating data
generated by predictive approaches, the following
general principles should be taken into account.

• The principle of proportionality: the amount 
of information needed is dependent on the scale 
of the decision that will result from it.

• The principle of caution: the amount of
information needed is dependent on the potential
risk the substance might pose; the more severe the
possible consequences, the more conservative the
approach.

44..33  OOvveerraallll  ccoonncclluuddiinngg
rreemmaarrkkss  

From the survey results and workshop discussions it
was apparent that, across UK government regulatory
bodies and agencies, there is scope and enthusiasm 
for a greater use of predictive approaches. 

The decision of whether or not to use these methods
as a stand-alone replacement for toxicity testing
depends on two factors: the criticality of the outcome
and the timeframe in which an answer is required. For
example, regulations that govern active substances for
use as pesticides, biocides and human and veterinary
medicines, which ensure that the toxicology of these
substances is thoroughly understood, have strict
information requirements that must be met by the duty
holder. In these cases, (Q)SAR, for example, does not
have regulatory acceptance as a stand-alone method
(whereas read-across does). However, in emergency
situations in which the option to conduct new toxicity
tests is not available, predictive approaches provide a
valuable means to rapidly generate a predictive basis
for assessment of the hazards, and therefore the
possible risks involved.

In addition to being used as stand-alone methods,
predictive approaches are perceived to be a useful 
tool to support regulatory decision making in a WoE
analysis. Indeed, the use of WoE approaches and
alternatives to animal tests is a central tenet of the
REACH regulation, which states that new vertebrate
testing should only be conducted as a last resort. The
guidance on how industry can meet its information
requirements under REACH includes an ‘integrated
testing strategy’ (ITS) for each endpoint, which helps
duty holders to decide whether sufficient information
is available from existing data, predictive approaches
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and in vitro tests without the need to conduct new
animal tests. The Council of Canadian Academies has
recently published a report on the integrated testing of
pesticides, which concluded that there will be an
“evolution towards the use of integrated testing
strategies in decision making, with the anticipation
that this will better inform decisions … over the next
two to ten years” (Expert Panel on the Integrated
Testing of Pesticides, 2012)18. Weight-of-evidence
approaches, and the use of predictive methods therein,
will therefore become increasingly important over the
coming years. 

During the workshop discussions, all the government
bodies highlighted the following three major barriers
to the more extensive use of predictive approaches and
in particular (Q)SAR models in regulatory decision
making.

• A lack of confidence in their outputs given that
accuracy and reliability of model predictions are
still inadequate for regulatory use

• A lack of modelling expertise and adequate
familiarity with more than one software package
within the department or agency for appropriate
interpretation and use of model predictions 

• Limited availability of appropriate tools, owing to
constraints imposed by cost and IT security issues
(usually, any download of software must be
approved and performed by the IT provider for the
department or agency, even if the software is freely
available on the internet)

These barriers apply especially to the use of (Q)SAR,
which usually requires computational models, with
which the regulatory bodies tend to have less practical
experience. The findings were consistent with those of
the EU ORCHESTRA survey (described in Section
1.3). There may also be a conflict between the
preferred model that would best suit the chemical and
the endpoint under investigation, and the software that
is actually available. In this situation the regulator
generally has to compromise and use the model(s)
available to his institution, but be especially aware 
of potential limitations in the prediction(s).

The majority of the government bodies reported that 
it is uncommon for duty holders to submit information
generated by predictive approaches to the regulators.
Recently, however, a report written by the European
Chemicals Agency on alternatives to animal testing in
REACH registration dossiers submitted by industry
indicated that 20–30% of dossiers, depending on the
endpoint, had used read-across to fill data gaps. The

UK REACH competent authority (situated within
HSE) has reviewed a number of read-across
arguments submitted by duty holders in support of
their registration dossiers. Assessment of these data
packages has identified that the use of read-across to
fill data gaps in registration dossiers is frequently not
accompanied by sufficient information to allow the
regulator to make an assessment of the validity of the
approach. For duty holders to take full advantage of
such opportunities to use predictive approaches they
need to be aware of what constitutes a robust
justification for the use of these approaches and what
information the regulator expects to be presented, for
example, as outlined above in Section 4.2
‘Recommended best practice’.

44..44  RReeccoommmmeennddaattiioonnss

The following recommendations are made.

An ‘Advisory Centre of Excellence’ should be
established

This would be available to all UK government
regulatory bodies that use predictive approaches and
would ensure that expert advice and appropriate tools
were available to all departments and agencies, via
‘consultants’ in the Centre. It would also remove the
duplication of effort that would occur where several
people across different bodies try to achieve the level
of expertise necessary to feel confident in the use and
analysis of these methods.

Training on in silico methods for regulators should 
be facilitated

Regulators in the government bodies that use or have
the potential to use predictive approaches should
obtain training in these methods so that they have
sufficient expertise to feel confident in their use and in
the evaluation of data generated by them.

Best practice in the use of predictive approaches should
be applied by duty holders

As far as possible, the OECD guidelines, as described
in Section 2, should be applied when generating and
assessing data from predictive approaches.

The regulatory community should issue advice to duty
holders on the information expected in submissions
that utilise predictive approaches

This would assist duty holders to submit good-quality
justifications for the use of these approaches, so that
they are more likely to be accepted by the regulator.
The advice could include the following
recommendations.

• To follow best practice, as described in guidance
documents produced by ECHA and the OECD
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18 http://www.scienceadvice.ca/uploads/eng/
assessments%20and%20publications%20and%20news%20releases/
Pesticides/Pesticides_Full_Report_EN.pdf
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• That robust, valid justifications are required

• To use a weight-of-evidence (WoE) approach,
including, where possible, the use of more than
one model where (Q)SAR is used, rather than to
rely on a single prediction (i.e., consensus
modelling should be encouraged).

Integrated testing strategies and weight-of-evidence
techniques should be promoted by the regulators for
application by industry

Predictive approaches (and in particular in silico
predictions) tend not to be accepted for regulatory
purposes as stand-alone methods. However, through
the use of ITS and WoE approaches, robust arguments
can be built that negate the need for new animal
testing. 

The development of web-based tools (by model
developers) which do not require local download 
of software should be encouraged by the regulators

This would bypass the cost and IT security issues
experienced by many government departments and
agencies.

The situation should be reviewed in a few years

As the use of predictive methods becomes more
widespread, developments should be kept under
review.
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11  TTaabbuullaatteedd  rreessuullttss  ooff  qquueessttiioonnnnaaiirreess

HSE, CRD BPD, active substance
evaluation

Mainly read-across in waiving arguments (especially for chronic/cancer studies and
reprotoxicity studies). Occasionally, model predictions (Derek Nexus), but in a WoE
approach, not in isolation. No documented guidance has been produced by CRD or
the EU – left to expert judgment

HSE, CRD BPD, product
authorisation

Mainly read-across from acute tox data and dermal absorption values on one
formulation to another product. Also, use of the calculation method of the
Preparation Directive is the ultimate application of predictive toxicology. No
documented guidance has been produced by CRD or the EU – left to expert
judgment

Current  use  of  predictive  approaches  in  toxicological  hazard  assessment  of  chemicals**

UK Department/ Programme/activity Predictive approaches used and documented guidance available
agency

HSE, CRD COPR, product
approval

Mainly read-across from acute tox data and dermal absorption values on one
formulation to another product. Also, use of the calculation method of the
Preparation Directive is the ultimate application of predictive toxicology. No
documented guidance has been produced by CRD – left to expert judgment

HSE, CRD OECD SIDS Read-across and category approaches used generally to fill data gaps. OECD
guidance available

HSE, CRD Pre-REACH: NONS,
new chemicals

Mainly read-across to fill data gaps (sometimes for the complete dossier).
Occasionally, model predictions (Derek Nexus & METEOR), but in a WoE
approach, not in isolation. Documented guidance produced by CRD**

HSE, CRD Pre-REACH, ESR,
existing chemicals

Mainly read-across and categories approaches to fill data gaps. No documented
guidance has been produced by CRD or the EU – left to expert judgment

HSE, CRD Major hazards Very occasionally read-across of acute toxicity data. No documented guidance has
been produced by CRD – left to expert judgment

HSE, CRD REACH Use of predictive approaches a central tenet of REACH. Specific rules for
adaptation of standard information requirements and general rules for use of
existing data, WoE, (Q)SAR, in vitro methods, grouping and read-across, exposure-
based waiving are laid out in the legal text. ITS is a key concept and requires that
all available information be taken into account and a WoE approach used before the
decision to conduct a new mammalian toxicity test is made. Detailed guidance on
(Q)SAR, grouping/read-across, ITS is available on ECHA’s website. The first
registration deadline has only recently passed, so as yet no information on how
commonly these methods have been used, but expect them to be fairly extensive.
CRD has presented a ‘thought-starter’ paper to the Member State Committee (which
makes decisions on testing proposals from registrants) that 90-day repeated dose
study could be waived based on negative findings in 28-day and acute toxicity
studies

N.B. Defra has sponsored a project (Inchemicotox) to develop alternatives to animal
testing for skin sensitisation (and acute fish toxicity) that included an ITS tool,
databases, in vitro data, QSAR, in chemico analysis
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UK Department/ Programme/activity Predictive approaches used and documented guidance available
agency
HSE, CRD C&L Classification based on structural alerts (e.g. respiratory sensitisation for

isocyanates, skin/eye irritation for organic peroxides) is explicitly allowed under
CHIP & CLP. Also, prediction of corrosivity from phys–chem information leads to
classification. Calculation method for mixtures under the Dangerous Preparations
Directive and bridging principles/calculation under CLP allow for prediction. Read-
across has very occasionally been used by CRD (malachite green to leucomalachite
green for acute toxicity, skin sensitisation; benzidine to diaminobenzidine for
mutation & carcinogenicity), and other member states have used grouping approach
(nickel salts for skin sens & carc). There are some harmonised classifications for
group entries (e.g. lead compounds, organic compounds of mercury, arsenic
compounds). No documented guidance has been produced by CRD – left to expert
judgement

HSE, CRD PPP Generally do not need to use predictive approaches as there is the option for
requiring data to be submitted on nearly all aspects. Predictions often performed 
for animal welfare and resource/financial reasons. Take a precautionary approach 
if in doubt. In house QSAR, normally with Derek Nexus

HSE, CRD PPP active substance,
new or review
evaluation

Predictive approaches are rarely used – extensive dataset normally submitted.
Occasional read-across between related molecules (e.g. tumour mechanisms) and
from racemic mixtures to resolved isomers – no guidance document

HSE, CRD PPP active substance,
source different to that
used in original
evaluation

EU guidance document stipulates submission of (Q)SAR on impurities but gives 
no guidance on performance or interpretation. Prediction of toxicity of impurities
relative to original active substance as evaluated, e.g. levels present in rat
metabolism; retention of known toxicophore; often request (Q)SAR on active
substance as well as impurity to see if any alerts are common and whether they
were seen in tests with the active substance. Even with guidance document can
require much expert judgement. Some data e.g. acute or genotox often submitted

HSE, CRD PPP plant metabolites Some data e.g. acute or genotox submitted but often need to use read-across from
data on active substance for overall risk assessment; (Q)SAR predictions; TTC;
amount produced in rat metabolism studies with active substance. Guidance being
reviewed at present

HSE, CRD PPP groundwater
metabolites

Use of structure considerations is mentioned in EU guidance document (no
indication of how to use the results). Basic data requirements triggered by predicted
levels in groundwater but risk assessment often relies on relating the likely toxicity
of the metabolite to that seen with the active substance – e.g. rat metabolite;
comparison of results in short-term studies

HSE, CRD PPP/COPR product
authorisation

Classification and labelling often based on properties of the components of the
product – use directive 99/45 (Dangerous Preparations Directive) approach. Dermal
absorption extrapolation from a formulation with data – based on similarity of
formulations (composition, physical chemistry properties, irritancy) – guidance
available but more being developed; a lot of expert judgement. Can use defaults 
e.g. 10% or 100% for dermal absorption

HSE, CRD PPP route-to-route
extrapolation

Repeat dose data are nearly always via oral route, non-consumer exposures are
dermal or inhalation. Very simple predictions of route to route toxicity based on
relative absorption (data on oral and often dermal, assume 100% for inhalation).
Can require route specific data e.g. if acute studies via different routes indicate 
a significant concern. Guidance document available but under revision

HSE, CRD PPP residues detected
in food

For many substances EU/US/WHO evaluations are available and no need to use
prediction. For some substance there is limited information available to CRD. Often
need conclusion rapidly so no option to require more studies – use data on related
molecules, TTC, (Q)SAR, determine MOE relative to any data available. Option 
to remove food from sale. No guidance document

FSA Flavouring Group
Evaluations

System is based largely on read-across from data on related substances using the
approach described in the SCF opinion on Flavouring Group Evaluations (which 
is similar to but more rigorous in terms of genotoxicity than the JECFA approach)
with modifications based on experiences gained as EFSA have undertaken the
evaluations
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UK Department/ Programme/activity Predictive approaches used and documented guidance available
agency
FSA Food additives On the additives side there are examples of read-across when related compounds

have been evaluated e.g. parabens and also when evaluating complex mixtures
(especially those derived from botanicals) e.g. using representative rosemary
extracts to cover the range of extracts used, increasingly in the re-evaluation of
natural colours and gums. Steviol is another example. In all cases these are case by
case and have developed from recognition that the SCF guidance for testing of food
additives implied treating every extract as a single compound was not justifiable
ethically or scientifically, the revised guidance includes this approach as a reduction
strategy for animal testing

EFSA Jelly minicups In the case of jelly minicups physical (rather than toxicological) properties of
various gums were read-across to identify the hazard and if this was likely to 
be a risk of choking

EFSA Nutrient sources The bulk of the comparisons of bioavailability for nutrients from nutrient sources
have been based on dissolution data on the compound and comparison to
dissolution and limited bioavailability data on one or more compounds

FSA Food chemical
incidents

For example there was read-across of Sudan I genotoxicity data to other Sudan dyes
and often forced to use information on similar or related compounds when there are
no data on the specific chemical identified

FSA Food contact materials Food contact material components especially plastics additives and printing inks
where there may be data on one of a group of related products but not on every
individual one. These are often trade name based (e.g. Irganox) where there are
testing data on ‘medical grades’ but not necessarily on other ones

EFSA Nanomaterials The new EFSA nanomaterial guidance effectively uses a limited testing on the
nanomaterial for comparison with and to validate read-across of the rest of the
database from other non-nanomaterial forms

FSA Process contaminants As with environmental contaminants and incidents, read-across from similar
chemicals has been used

FSA ESR Have previously agreed with read-across proposals in reviews prepared by HSE

FSA Veterinary medicines 4-chloroaniline was noted to be an impurity within some veterinary medicinal
products and was considered an in vitro genotoxin and carcinogen. In vivo
genotoxicity was unclear such that it was possible that carcinogenicity could be
non-genotoxic in line with an alternate theory. SAR and (Q)SAR assessments found
alerts for positive in vitro and in vivo genotoxicity

FSA Animal feed additives Nicarbazin is a feed additive composed of two compounds, one of which 
(4,4’-dinitrocarbanilide, DNC) had mixed in vitro genotoxicity results and a single
negative in vivo bone marrow micronucleus result. Predictive methods (Toxtree,
Lazar and Osiris) found that DNC contained structural alerts for positive results
within in vitro and in vivo assays and supported a line of requiring further in vivo
data

FSA Novel foods Advice was needed at short notice on the toxicity of glycidol fatty acid esters
(GFAE) found in fats and oils. Read-across from [genotoxic] glycidol and a manual
consideration of whether structural alerts would be retained in the ester or not was
made. This raised concerns over genotoxicity and some qualifying factors that
might mitigate concern depending on what the actual molecular structures of poorly
characterised GFAE were

FSA Environmental
contaminants

The read-across of the chlorinated dioxins TEF to brominated and mixed
halogenated dioxins for the risk assessment of the brominated and mixed dioxins
was agreed by the Committee on Toxicity. This allowed the risks from the measured
levels of brominated and mixed halogenated dioxins in a limited selection of foods
to be evaluated. Whilst this approach is a logical extension of the TEF concept
(which was recognised by WHO) based on the common mode of action, there are
extremely few in vivo or in vitro data on the relative potency of brominated and
mixed halogenated dioxins. These limited data suggest that chlorinated dioxins 
are likely to be more potent and using their TEF for the brominated and mixed
halogenated dioxins would probably be precautionary

Similarly there was an assumption of a common mode of action and read-across
with brominated diphenyl congeners. All examples are case by case assessments
accompanied by a description of the associated uncertainties and assumptions and
there is neither a defined specific approach nor generic guidance
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UK Department/ Programme/activity Predictive approaches used and documented guidance available
agency
FSA Pesticides Monocrotophos is a banned genotoxic pesticide and predictive methods (Toxtree,

Lazar and Osiris) were used to consider whether a putative leaving group would
retain the genotoxicity of the parent molecule or not

FSA Food Chemicals Risk
Assessment

Habitual exposures predicted from short-term food consumption survey data or if
not available, portion size data for the food itself or an appropriate proxy. In the
absence of survey data, exposure to chemicals in toddlers is predicted via the use 
of harmonised European databases (concise and comprehensive databases), or via
extrapolation between age groups

HPA COM/Mutagenicity In vitro genotoxicity testing can be predictive of mutagenic potential. QSAR can 
be used for preliminary prediction of mutagenicity when no other data available, 
but additional data required prior to risk assessment. This is in line with draft
revised COM strategy for testing document. COM discussed the use of SAR for 
the prediction of mutagenic potential of drinking water contaminants; however, 
the committee indicated that they required further information on the programs 
used before providing detailed comment

HPA COC/Carcinogenicity Use of results of mutagenicity tests to predict whether a chemical is genotoxic 
or non-genotoxic. This has implications for the risk assessment approach for
carcinogenicity. Use of the Minimal Risk Approach to derive a pragmatic level 
for maximum exposure to a genotoxic carcinogen e.g. in advising on carcinogenic
impurities in the pesticide 1-methylcyclopropene
(http://www.iacoc.org.uk/publications/documents/guideline04.pdf Para 65ff)

Use of TEF for dioxins to estimate carcinogenicity of a mixture of dioxins, when
carcinogenicity data are lacking on most congeners (TEF apply in other categories
also)

HPA Contaminated land Use of the Minimal Risk Level Approach for deriving tolerable exposure levels
from genotoxic soil carcinogens from soil
(http://archive.defra.gov.uk/environment/quality/land/contaminated/documents/legal
-definition.pdf p. 13)

HPA Drinking water Not used QSAR and not aware of others in the HPA having used them for drinking
water or contaminated land risk assessments.

HPA has been faced with the problem of conducting risk assessments for chemicals
where there is no available toxicity data e.g. drinking water product approvals and
some private water supply test results. In this case it is stated that a risk assessment
is not possible for such individual chemicals (where appropriate extremely small
concentrations or declining concentrations can be noted). Could not find out the
frequency with which such requests for a risk assessment cannot be given occur.

For DWI product approval applications in some rare instances HPA has reported
toxicity data for very similar compounds, noting that this could be useful
information, but, clearly stating that no suitable data were available for the original
compound and acknowledging the uncertainty in making comparisons (i.e. a read-
across approach).

Example 1: application for use of a particular product that might contaminate
drinking water. A predictive approach of sorts was adopted. EFSA had already
indicated that the substance is extensively metabolised to aniline. Aniline is
genotoxic in vivo and also carcinogenic. Thus, it was considered prudent to regard
the product as a potentially genotoxic carcinogen.

We have also pointed out that certain structural characteristics can indicate potential
mutagenicity and carcinogenicity such as nitrosamines and primary aromatic
amines.

Example 2: HPA was asked for advice on alkyl alkanes detected at 3 μg l-1 in
response to a customer taste/odour complaint. There was some uncertainty over 
the analysis. The approach recommended by the World Health Organization (WHO)
for similar imprecise groups or hydrocarbon mixtures i.e. based on Total Petroleum
Hydrocarbon Criteria Group (TPHCWG, 1997), was used. The TPHCWG (1997)
derived a number of oral reference doses (RfD) for various hydrocarbon fractions
that each contains alkyl alkanes (amongst other hydrocarbons). Thus, a conservative
risk assessment can be undertaken by using the 
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HPA Chemicals in waste
processes

Use of margin of exposure approach to risk assess concentrations of 1,2-
dichloroethane around landfill sites. Use of EPAQS relative potency methodology to
risk assess concentrations of PAH around landfill sites. Route-to-route extrapolation
to derive reference concentration for systemic effects from styrene levels around
landfill sites

(Reference for all above: http://cot.food.gov.uk/pdfs/cotstatementlandfill201001.pdf)

HPA Emergency response Not apparently used

HPA Consumer products

Veterinary medicines

OECD HPV chemicals

Biocides

Pesticides

HPA does not lead on these areas, only provides comment, on request, on
assessments made by other authorities/agencies

MHRA Initial clinical trial dose
setting considerations

Several predictive approaches used. Computer aided prediction of drug toxicity e.g.
QSAR, Derek Nexus, MCASE, TOPKAT. Receptor occupancy of target receptors,
based on in vitro studies. Use of PAD, which may be derived from appropriate
pharmacodynamic–pharmacokinetic models (i.e. exposure–response relationships)
in animal species and applied to determine a human PAD 

Also, use of NOAEL. The NOAEL is converted to HED and by scaling down by
usually a factor of 10, the MRSD is derived. It is usually better to start with a dose
justified as being safe, but not active, rather than a dose estimated as the PAD. The
concept of PAD is close to that of the MABEL, however, MABEL is specific for
humans and applies to a minimum level of biological activity whereas PAD implies

HPA Indoor air pollution Example: HPA was asked when occupants could go back into building following 
a kerosene spill where there would be exposure to resultant hydrocarbon mixture

We would recommend that the occupants could return to the house when the
kerosene concentration has decreased to value within the range of 0.45 ppm to 
1.5 ppm (3–10 mg m-3), providing that the concentrations can be shown to be
decreasing with time

This is on the assumption that exposure is to a hydrocarbon fraction range of
approximately C8–C16, which is commonly associated with kerosene and JP5/JP8
jet fuel. This would be in line with both the authoritative TPHCWG (1997) chronic
(lifetime) reference concentration of 1 mg m-3 for JP8 jet fuel (C8–C16) multiplied
by a factor of 10 for short-term exposure (JP5/JP8 jet fuel can be considered as
sufficiently similar or representative of kerosene)

[It may be useful to note that symptoms/discomfort, such as irritation (but not likely
to cause serious harm) may be experienced at an acute exposure (up to 8 hours) at
an AEGL-1 value of 44 ppm (290 mg m-3) for JP-8. The symptoms would be
transient and reversible upon cessation of exposure]

HPA Drinking water lowest RfD applicable to the various alkyl alkanes that could be present in drinking
water, namely 0.1 mg kg-1 bw day-1

The RfD are derived from individual chemicals or hydrocarbon mixtures considered
to be sufficiently representative of the toxicity of a hydrocarbon fraction (containing
a large number of individual chemicals within certain carbon number range)

Going forward, it may be useful to have access to and training for QSAR,
particularly for potential mutagenicity. A COM view on suitable QSAR packages
would be helpful (i.e. most appropriate QSAR packages)

For a substantial number of chemicals (usually low water concentrations) no data
are available. In such cases, software that uses pre-existing data on mode of action
to predict other potential endpoints would not be of practical use (i.e. where there
are no data at all, rather than just some data gaps). Generally, from the point of view
of risk assessment of exposure to relatively low drinking water concentrations, it is
the most sensitive endpoint that is crucial and additional information on other
potential endpoints at higher doses may not be particularly informative

UK Department/ Programme/ Predictive approaches used and documented guidance available
agency activity
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MHRA Initial clinical trial dose
setting considerations

optimal activity. A safe starting dose for clinical trials in humans should be based on
pharmacology and toxicology, adjusted for anticipated exposure in humans and for
interspecies differences in potency

In vitro studies in animal species/models in particular those designed to investigate
the mechanism or mode of action of a drug

UK Department/ Program/activity Predictive approaches used and documented guidance available
agency

EA REACH related risk
assessments and
generic human health
risk assessments for
environmental
contaminants

OECD QSAR Toolbox 

Consult with HSE, CRD to use their prediction models

* See Glossary for abbreviations
** Hanway RH (2002) The use of toxicological read-across data in the notification of new chemicals. Industrial Chemicals Unit, Health and Safety
Executive, Magdalen House, Stanley Precinct, Bootle, Merseyside, L20 3QZ, UK
Web addresses accessed March 2013
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Accelrys ADME add in (Accelrys Accord for Excel program) Commercially available from Accelrys Inc.
http://accelrys.com/products/discovery-studio/admet.html

AIM (analogue identification methodology) Publicly available from the US EPA
http://www.epa.gov/opptintr/sf/tools/aim.htm

AMBIT including AMBIT Disclosure & AMBIT Discovery Freely available from
http://ambit.sourceforge.net/downloads.html 

Also available from IdeaConsult Ltd
And ADMET Predictor 5.0 Commercially available from Simulations Plus, Inc.

http://www.simulations-plus.com/
BfR rule-base Free, available in house at BfR

http://www.bfr.bund.de/en/home.html

CAESAR (Computer Assisted Evaluation of Industrial Chemical
Substances According to Regulations)

Freely available from http://www.caesar-project.eu/

Carcinogenic Potency Database (CPDB) Freely available from http://toxnet.nlm.nih.gov/cpdb/

CAS SciFinder Commercially available from
https://www.cas.org/products/scifinder

CASE (Computer Automated Structure Evaluation) including
MultiCASE , META, MCASE CASETOX, TOXALERT

Commercially available from http://www.multicase.com

CATABOL http://oasis-lmc.org/products/models/environmental-fate-and-
ecotoxicity/catabol-301c.aspx

ChemFinder Available both publicly & by subscription from
http://www.chemfinder.com

ChemID / Plus / Advanced Publicly available from the US National Library of Medicine
(NLM) http://chem.sis.nlm.nih.gov/chemidplus

Danish (Q)SAR database Free internet accessible version at http://qsar.food.dtu.dk/ or from
the JRC

Developed for JRC by the Danish EPA

DART (Developmental & Reproductive Toxicology Database) Freely available from http://toxnet.nlm.nih.gov/

Derek Nexus Commercially available from http://www.lhasalimited.org/

ECOSAR http://www.epa.gov/oppt/newchems/tools/21ecosar.htm
Endocrine Disruptor Knowledge Base (EDKB) database Freely available from the US FDA website

http://www.fda.gov/scienceresearch/bioinformaticstools/endocrin
edisruptorknowledgebase/default.htm

Enhanced NCI Database Browser Freely available from http://cactus.nci.nih.gov/
EPIsuite Freely available from the US EPA website at

http://www.epa.gov/opptintr/exposure/pubs/episuite.htm
EPIWIN Freely available at http://esc.syrres.com/esc/epi.htm
ESIS (European Chemical Substances Information System) Freely available from http://esis.jrc.ec.europa.eu/
HazardExpert Freely available from http://www.compudrug.com

Developed by CompuDrug Ltd

33  CCoommppuuttaattiioonnaall  ttoooollss

Tool Available from*

Accelrys ADME add in (Accelrys Accord for Excel program) Commercially available from Accelrys Inc.
http://accelrys.com/products/discovery-studio/admet.html

ADME Boxes ACD Labs

http://www.acdlabs.com/products/pc_admet/adme/adme/
ADMET Discovery Studio ACD LAccelrys Inc. 

http://accelrys.com/products/discovery-studio/admet.htmlabs
ADMET Predictor 5.0 Accelrys Inc. 

www.accelrys.com
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Tool Available from*

Hazardous Substances Database (HSDB) Publicly available from the US National Library of Medicine
(NLM) Toxicology Data Network (TOXNET) 

http://toxnet.nlm.nih.gov

HYDROWIN Freely available at http://esc.syrres.com/esc/epi.htm
IARC monographs Freely available from http://monographs.iarc.fr/index.php
ICSAS Reprotox Database Freely available from http://www.fda.gov/
ILSI Developmental Toxicity database Currently under development & not yet available

Expected to be available from http://www.ilsi.org/
http://www.epa.gov/

JRC (Q)SAR Model Database http://ihcp.jrc.ec.europa.eu/our_databases/jrc-qsar-inventory

Leadscope Commercially available from http://www.leadscope.com/

MDL Reaction Database Commercially available – more information at
http://www.akosgmbh.de/pdf/PCD_Brochure.pdf

MDL–(Q)SAR Freely available at http://mdl-qsar.software.informer.com/
MetabolExpert www.compudrug.com
METEOR Commercially available from http://www.lhasalimited.org
MolCode Toolboxes Commercially available from

http://www.compudrug.com/?q=node/26
NTPBSI Database (National Toxicology Program Bioassay
Online Database)

Freely available, chemical list available from
http://www.epa.gov/

Searchable online at
http://www.epa.gov/ncct/dsstox/sdf_ntpbsi.html

OASIS Commercially available at http://oasis-
lmc.org/products/software/database-manager-and-centralized-
database.aspx

OECD Chemical category database (eChemPortal) Freely available from the OECD at 
http://www.echemportal.org/echemportal/index?pageID=
0&request_locale=en

OECD database on chemical risk assessment models Available from www.oecd.fr

OncoLogic Freely available from the US EPA website at
http://www.epa.gov/oppt/sf/pubs/oncologic.htm

OSIRIS Property Explorer Free and commercially available versions from
http://www.pharmaexpert.ru/PASSOnline/

PASS (Prediction of Activity Spectra for Substances) Free and commercially available versions of PASS from
http://www.pharmaexpert.ru/PASSOnline/

(Q)SAR Toolbox http://www.oecd.org/env/ehs/risk-
assessment/theoecdqsartoolbox.htm

REPROTOX® Available at http://www.reprotox.org/Default.aspx
RTECS (Registry of Toxic Effects of Chemical Substances) Available at http://www.cdc.gov/niosh/rtecs/
SICRET (Skin Irritation Corrosion Rules Estimation Tool) Included and available from Toxtree at

http://toxtree.sourceforge.net/skin.html

TERIS Teratogen Information system Available from http://depts.washington.edu/terisweb/teris/
TIMES (Tissue Metabolism Simulator) Available from http://oasis-lmc.org

Developed by Laboratory of Mathematical Chemistry (LMC)
TIMES-SS (Tissue Metabolism Simulator for Skin Sensitisation) Available from http://oasis-lmc.org
TOPKAT Commercially available from http://www.accelrys.com

Developed by Accelrys Inc.

SPARC (SPARC Performs Automated Reasoning in Chemistry) Available from http://www.archemcalc.com/sparc.html
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Tool Available from*

TOXNET (Toxicology Data Network) Freely available from http://toxnet.nlm.nih.gov/

ToxRefDB (Toxicity Reference Database) Freely available from http://www.epa.gov/NCCT/toxrefdb/

Toxtree Freely available from http://sourceforge.net/projects/toxtree/

Developed for JRC by Ideaconsult Ltd

*Web addresses accessed March 2013

Toxmatch Available from the JRC website at
http://ihcp.jrc.ec.europa.eu/our_labs/predictive_toxicology/qsar_
tools/toxmatch
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Abbreviations and Glossary 

AAbbbbrreevviiaattiioonnss

ADME Absorption, distribution, 
metabolism, excretion

ADMET Absorption, distribution, 
metabolism, elimination, toxicity

AEGL Acute exposure guideline level

AOP Adverse outcome pathway

AR Androgen receptor

BPD Biocidal Products Directive 

BfR Institute for Risk Assessment, 
Germany

BPR Biocidal Products Regulation

C&L Classification and labelling 

CEFIC Conseil Européen des Fédérations 
de l’Industrie Chimique

CAS Chemical Abstracts Service

CAS number CAS Registry database number,.

CEBS Chemical Effects in Biological 
Systems

CHIP Chemicals (Hazard Information and
Packaging for Supply) Regulations

CHO/HPRT Chinese hamster ovary / 
hypoxanthine-guanine 
phosphoribosyl transferase

CLP Regulation on classification, 
labelling and packaging of 
substances and mixtures

COC Committee on Carcinogenicity 
of Chemicals in Food, Consumer
Products and the Environment

COM Committee on Mutagenicity of
Chemicals in Food, Consumer
products and the Environment

COPR Control of Pesticides Regulations

CPDB Carcinogenic Potency Database

DWI Drinking Water Inspectorate

ECHA European Chemicals Agency

EFSA European Food Standards Agency

EINECS European Inventory of Existing 
Commercial chemical Substances

ELINCS European List of Notified Chemical 
Substances

EPA Environmental Protection Agency

ER Estrogen receptor

ESIS European Chemical Substances 
Information System

ESR Existing Substances Regulation

EU European Union

FDA Food and Drug Administration

GHS Globally harmonised system
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HED Human equivalent dose

HPV High production volume

IARC International Agency for Research 
on Cancer

ICSAS Informatics and Computational 
Safety Analysis Staff

ILSI International Life Science Institute

ITS Integrated testing strategy

JECFA Join WHO/FAO Expert Committee 
on Food Additives

JRC Joint Research Council

LOAEL Lowest observed adverse effect level

MABEL Minimal anticipated biological 
effect level

MIE Molecular initiating event

MLR Multiple linear regression

MRSD Maximum recommended starting 
dose 

MTD Maximum tolerated dose

NLP No-longer polymer

NOAEL No observed adverse effect level

NONS Notification of new substances

NTP National Toxicology Program

OECD Organisation for Economic 
Co-operation and Development

PAD Pharmacologically active dose

PAH Polycyclic aromatic hydrocarbons

PCA Principal component analysis

PCR Principal component regression

PPP Plant Protection Products

PPPR Plant Protection Products Regulation

QAAR Quantitative activity–activity 
relationship

QMDB (Q)SAR model database

QMRF (Q)SAR model reporting format

QPDB (Q)SAR prediction database

QPRF (Q)SAR prediction reporting format

(Q)SAR (Quantitative) structure–activity 
relationship

RAI Relative alkylation index

REACH Registration, evaluation, 
authorisation and restriction of 
chemicals

RfD Reference dose

RIVM National Institute of Public Health 
and the Environment, the 
Netherlands

RTECS Registry of Toxic Effects of 
Chemical Substances

SAR Structure–activity relationship

SIDS Screening Information Datasets

SLRL Sex-linked recessive lethal

SMILES Simplified Molecular Input Line 
Entry System

TEF Toxic equivalent factor

TK Thymidine kinase

TMC Toxicologically meaningful category

TPHCWG Total Petroleum Hydrocarbon 
Criteria Group

TTC Threshold of toxicological concern

UDS Unscheduled DNA synthesis

WoE Weight of evidence
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AEGL-1: the airborne concentration, expressed as
ppm or mg m-3, of a substance above which it is
predicted that the general population, including
susceptible individuals, could experience notable
discomfort, irritation, or certain asymptomatic non-
sensory effects. However, the effects are not disabling
and are transient and reversible upon cessation of
exposure.

Algorithm of a model: could be a mathematical
model or a knowledge-based rule that forms the
relationship between the chemical
structure/substructure or other molecular descriptors 
of the substance and the predicted endpoint.

Analogue approach: the reading-across of endpoint
information for one chemical to predict the same
endpoint for another chemical (i.e., a one-to-one read-
across).

Adverse outcome pathway (AOP): a set of chemical,
biochemical, cellular and physiological responses
which characterises the biological effects cascade
resulting from a particular molecular initiating event.

Applicability domain (of a (Q)SAR model): the
response and chemical structure space in which the
model makes predictions with a given reliability.

Automated rule induction systems: a type of expert
system that primarily use rules based on statistics, the
models have been developed from statistical analysis
of the data.

Breakpoint chemical: a chemical that identifies a
turning point in a trend.

Chemical category: a group of chemicals whose
physicochemical and human health and/or
environmental toxicological properties and/or
environmental fate properties are likely to be similar
or follow a regular pattern as a result of structural
similarity.

Consensus modelling: combination of predictions
from two or more expert systems and/or (Q)SAR.

Database: experimental data representing one or more
effects of chemicals in biological systems.

Expert system: any formalised system (not
necessarily computer-based) that enables a user to
make rational predictions about the properties or
activities of chemicals.

Extrapolation: the estimation of a value that is at 
or near the category boundary using measured values
from internal category members.

Global (Q)SAR model: produces its prediction from
a diverse dataset, covering a wide range of chemicals. 

Grouping (or chemical grouping): the general
approach to assessing more than one chemical at the
same time, it can include the formation of a chemical
category or the identification of a chemical analogue
for which read-across may be applied.

Hybrid system: a type of expert system that combines
both knowledge-based and statistically based rules.

Interpolation: the estimation of a value using
measured values from category members on both sides
of the unknown data point.

Knowledge based systems: a type of expert system
that primarily uses rules derived from expert opinion.

Local (Q)SAR model: have a reduced applicability
domain and produce their predictions from a narrower
data subset, usually based on analogous chemicals.

Molecular initiating event (MIE): the initial
chemical induced perturbation of some biological
system.

Molecular descriptors: provide a means of
representing molecular structures in a numerical form
and are used to describe different features of a
chemical. The number may be a theoretical attribute
(e.g. relating to size or shape) or measurable property.
The most simple and commonly used molecular
descriptors are molecular weight, atomic composition
indices and atomic count descriptors. Other commonly
used descriptors are those representing structural
fragments. More complex descriptors are the
topological descriptors which tend to represent
structural features of the molecule such as size, shape,
symmetry, branching, cyclicity and bond multiplicity.
Even more complex descriptors are the geometrical 
3-D descriptors. These require knowledge about the
relative positions of the atoms in 3-D space.

PAD: pharmacologically active dose – a dose that 
is estimated to have the intended pharmacological
activity.

QAAR: a mathematical relationship between two
biological endpoints or activities. QAAR are based 
on the assumption that knowledge about the mode 
of action for an endpoint is applicable to a similar
endpoint because the main underlying processes 
of these related endpoints or activities are the same
(e.g. partitioning, reactivity, enzyme inhibition).
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(Q)SAR: a mathematical model that relates
quantitative parameters from the chemical structure 
to a quantitative measure of a particular biological
activity or property.

(Q)SAR model reporting format (QMRF): a
reporting format for the use of (Q)SAR and includes 
a description of the algorithm, the model development
and validation according to the OECD principles and
evaluation studies performed with the model.

(Q)SAR prediction reporting format (QPRF): a
reporting format for predictions from (Q)SAR, this
should explain how the estimate was derived by
applying a specific model to a specific substance. It
should include information of the model prediction,
the endpoint, the substance modelled, the relationship
between the substance and the applicability domain,
analogues of the substance and the relationship
between the predicted endpoint and the regulatory
endpoint.

Qualitative read-across: the presence or absence 
of a particular property or activity is inferred from 
the source chemical(s) to the target chemical(s).
Qualitative read-across gives a yes/no answer 
(e.g. the substance is a skin sensitiser or not).

Quantitative read-across: properties from the source
chemical(s) with known values are used to estimate
the value of that property for the target chemical(s).
Quantitative read-across yields a quantitative value for
an endpoint (e.g. the potency of a carcinogen, an LD50
value or a LOAEC for hepatotoxicity).

Read-across: a data gap-filling technique used to
predict endpoint information for one chemical by
using data from the same endpoint from another
chemical which is considered to be similar in some
way. Read-across can be used in the context of both
the analogue approach and the category approach.

RfD: the oral reference dose, defined as ‘an estimate
(with uncertainty spanning perhaps an order of
magnitude) of a daily population exposure that is
likely to be without an appreciable risk of deleterious,
non-carcinogenic effects during a lifetime.

Rule-base: rules derived from experimental data that
are used to analyse other chemicals.

SAR: a qualitative relationship between a particular
molecular structure or substructure and the presence or
absence of a biological activity, or the capacity to
modulate the biological activity imparted by another
substructure.

Sentinel chemicals: chemicals that are at the opposite
extremes of a trend.

Similarity principle: theory that similar chemicals
should have similar biological properties.

Subcategories: larger categories could have several
different trends for a single endpoint, these are divided
into smaller subcategories.

Test dataset: comprises a set of chemicals with their
molecular descriptors and estimated endpoint values
used to test the predictivity of the (Q)SAR model.

Training dataset: includes a set of chemical
substances with their molecular descriptors and
measured endpoint values used to develop a 
(Q)SAR model.
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